Document Type


Publication Date





Journal of Physical Chemistry C


Where water meets an immiscible liquid, the orientation and hydrogen bonding patterns of the molecules nearest the interface differ significantly from those in the bulk. These differences drive important interface-specific phenomena, including interfacial tension and the adsorption of other molecular species. Additionally, surfactants and other amphiphilic molecules present at the interface interact with both the aqueous and hydrophobic layers in a complex fashion that can dramatically change the characteristics of the interface as a whole. In this study, classical molecular dynamics computer simulations have been employed to investigate the accommodation of lauric acid at the water− hexane and water−carbon tetrachloride interfaces. Our results show that the behavior of surfactant molecules in the interfacial region is strongly influenced by the protonation of their headgroups. Deprotonated lauric acid molecules cause a larger increase in interfacial width than their protonated counterparts. The carboxylate headgroups of laurate anions in the interfacial region consistently point toward the water layer, while the orientation of the protonated lauric acid headgroups changes with depth into the water layer.


© 2014 American Chemical Society. Access and use of this article is provided under the terms of the ACS Author Choice Usage Agreement.

Included in

Chemistry Commons