Validation of a New HPLC Method for Determination of Midazolam and its Metabolites: Application to Determine its Pharmacokinetics in Human and Measure Hepatic CYP3A Activity in Rabbits

Fawzy Elbarbry
Pacific University

Ahmed Attia
University of Saskatchewan

Ahmed Shoker
University of Saskatchewan

Follow this and additional works at: http://commons.pacificu.edu/phrmfac

Part of the [Pharmacy and Pharmaceutical Sciences Commons](http://commons.pacificu.edu/phrmfac)

Recommended Citation
http://commons.pacificu.edu/phrmfac/11
Validation of a New HPLC Method for Determination of Midazolam and its Metabolites: Application to Determine its Pharmacokinetics in Human and Measure Hepatic CYP3A Activity in Rabbits

Abstract
Midazolam (MDZ) is a commonly used Benzodiazepine in clinical practice. In addition, its metabolic oxidation is used as a surrogate marker for Cytochrome P450 (CYP) 3A enzyme activity as well. Thus, a new simpler method to measure MDZ and its metabolites is welcomed. Herein we report a new and simple HPLC method with ultraviolet detection for the simultaneous determination of midazolam and its hydroxyl metabolites using lorazepam as an internal standard. A liquid-liquid extraction was used to extract the compounds from rabbit hepatic microsomes and human plasma. The separation was performed on a Zorbax Eclipse XDB C18 column using a mobile phase composed of 0.05M Na2PO4 (pH 4.5) and acetonitrile mixture (67:33) pumped at 1.2 mL/min. The calibration curves showed good linearity with correlation coefficient higher than 0.999 for all analytes in the range 10-500 ng/mL. Accuracy in the measurement of quality control (QC) samples was in the range 95-106% of the nominal values. The intra-day and inter-day precision in the measurement of QC samples were less than 11% coefficient of variation. Although less sensitive than gas-chromatography-mass spectrometry (GC-MS), the proposed method was adequately sensitive to measure midazolam hydroxylase activity as a marker for CYP3A activity, and was applied to measure midazolam pharmacokinetics in human plasma.

Disciplines
Pharmacy and Pharmaceutical Sciences

Comments
Poster presented at the 2009 AAPS Annual Meeting.

Rights
Terms of use for work posted in CommonKnowledge.
Valiation of a New HPLC Method for Determination of Midazolam and its Metabolites: Application to Determine its Pharmacokinetics in Human and Measure Hepatic CYP3A Activity in Rabbits

Fawzy Elbarbry +, Ahmed Attila −, Ahmed Shoker +
+ Pacific University School of Pharmacy – College of Health Professions - Hillsboro, Oregon, USA
− Department of Medicine, University of Saskatchewan, Saskatoon, Canada

ABSTRACT

Midazolam (MDZ) is a commonly used Benzodiazepine in clinical practice. In addition, its metabolic oxidation is used as a surrogate marker for Cytochrome P450 (CYP) 3A enzyme activity as well. Thus, a new simpler method to measure MDZ and its metabolites is warranted. Herein we report a new and simple HPLC method with ultraviolet detection for the simultaneous determination of midazolam and its hydroxy metabolites using lineazepam as an internal standard. A liquid-liquid extraction was used to extract the compounds from rabbit hepatic microsomes and human plasma. The separation was performed on a Zorbax Eclipse XDB-C18 column using a mobile phase composed of 0.05M Na2PO4 (pH4.5) and acetonitrile mixture (67:33) pumped at 1.2 mL/min. The calibration curves showed good linearity with correlation coefficient higher than 0.998 for all analytes in the range 10-500 ng/mL. Accuracy in the measurement of quality control (QC) samples was in the range 95-106% of the nominal values. The intra-day and inter-day precision in the measurement of QC samples was less than 11% coefficient of variation. Although less sensitive than gas-chromatography-mass spectrometry (GC-MS), the proposed method was adequately sensitive to measure midazolam hydroxylation activity as a marker for CYP3A, and was applied to measure midazolam pharmacokinetics in human plasma.

METHODS

HPLC

Institution

The HPLC system consisted of Waters model 2695 Alliance separation module, model 2565 photo-diode array detector and Empower data module (Waters Corporation, Milford, MA, USA). Chromatographic separation was carried out on Zorbax Eclipse XDB C18 column (150 x 4.6 mm I.D., 5 µm particle size). The column was kept at 25°C.

CHROMATOGRAPHIC CONDITIONS

The isocratic mobile phase consisted of 0.05M Na2PO4 (pH 4.5) adjusted with phosphoric acid and acetonitrile mixture (67:33) was run at a flow rate of 1.2 mL/min. Absorbance was monitored at 227 nm. This wavelength was found adequate to monitor MDZ, 1-OH MDZ, 4-OH MDZ, and LOR as indicated by using the PDA detector.

RESULT

Extraction recovery of MDZ, its metabolites and the internal standard (LOR) from spiked rabbit hepatic microsomes (n= 5), and extraction recovery of MDZ and LOR in spiked human plasma samples (n = 5).

Table 1. Extraction recovery of MDZ, its metabolites and the internal standard (LOR) from spiked rabbit hepatic microsomes (n = 5), and extraction recovery of MDZ and LOR in spiked human plasma samples (n = 5).

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Nominal Conc. (ng/mL)</th>
<th>Average (n=5)</th>
<th>SD</th>
<th>% Accuracy</th>
<th>CV%</th>
<th>Average (n=10)</th>
<th>SD</th>
<th>% Accuracy</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-OH MDZ</td>
<td>20</td>
<td>19.03</td>
<td>1.36</td>
<td>95.15</td>
<td>7.15</td>
<td>19.5</td>
<td>1.96</td>
<td>97.5</td>
<td>5.4</td>
</tr>
<tr>
<td>4-OH MDZ</td>
<td>100</td>
<td>105.3</td>
<td>6.3</td>
<td>105.3</td>
<td>6.3</td>
<td>106.2</td>
<td>5.7</td>
<td>106.2</td>
<td>5.3</td>
</tr>
<tr>
<td>Human Plasma</td>
<td>20</td>
<td>20.8</td>
<td>2.1</td>
<td>104</td>
<td>10.1</td>
<td>20.0</td>
<td>1.7</td>
<td>100.5</td>
<td>6.2</td>
</tr>
<tr>
<td>LOR</td>
<td>20000</td>
<td>94.2</td>
<td>12.2</td>
<td>94.2</td>
<td>12.2</td>
<td>94.2</td>
<td>12.2</td>
<td>94.2</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±3</td>
<td>±6</td>
<td>±3</td>
<td>±6</td>
<td>±3</td>
<td>±6</td>
<td>±3</td>
<td>±6</td>
</tr>
</tbody>
</table>

MEASUREMENT OF HEPATIC CYP3A ACTIVITY IN RABBITS

MDZ hydroxylation activity was determined by quantification of 1-OH MDZ and 4-OH MDZ formation rates in rabbit hepatic microsomes. Preliminary experiments were conducted to determine linear metabolism formation kinetics with respect to MDZ-concentration, incubation time and microsomal protein concentration.

PHARMACOKINETIC ANALYSIS

The maximum plasma concentration (Cmax) and time to reach Cmax (Tmax) following MDZ administration were obtained directly from the individual plasma-concentration time data for MDZ. The area under concentration-time curve from time zero to infinity (AUC(∞)) was measured using linear trapezoidal summation with extrapolation. The terminal elimination rate constant (β) was estimated by linear least square regression analysis of the terminal log-linear portion of plasma-concentration time curve. The terminal elimination half-life (t1/2) was determined as ln(2)/β.

CONCT INFORMATION

Fawzy Elbarbry, PhD
Assistant Professor, Pacific University School of Pharmacy, 222 SE 8th Avenue, Hillsboro, Oregon 97123
Phone: 503-352-7356, Email: fawzy.elbarbry@pacificu.edu