Basic vision training manual

Jane E. Kimura
Pacific University

D Cory Rath
Pacific University

Recommended Citation

https://commons.pacificu.edu/opt/1247
Basic vision training manual

Abstract
Basic vision training manual

Degree Type
Thesis

Rights
Terms of use for work posted in CommonKnowledge.
Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the “Rights” section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.). Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see “Rights” on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209. Email inquiries may be directed to: copyright@pacificu.edu

This thesis is available at CommonKnowledge: https://commons.pacificu.edu/opt/1247
ABOUT THE AUTHORS...

JANE E. KIMURA received a B.S. from the University of Arizona. She served one year as the screenings coordinator for AMIGOS EYECARE and was treasurer for C.O.V.D. for two years. She is a member of B.S.K., C.O.V.D. and a SMART READER volunteer. Jane is currently working towards a masters of education, visual function in learning degree. She plans to serve the needs of school-aged children and to specialize in visual training.

D. CORY RATH received a B.Sc. in Zoology from the University of Calgary. He was the recipient of the Peg Gilbert Award for Outstanding Achievement in Basic Visual Science, and acted as an Honorary Scholar for SOLA Quest. He is a member of B.S.K., C.O.V.D., and the Sports Vision Section of the A.O.A. Cory plans to return to Calgary, Canada to practice full-scope optometry and to promote excellence and safety in sports vision.
This project is dedicated to C.O.V.D., Pacific University chapter. We would like to acknowledge Hannu Laukkanen for his sincere interest in the project, and Paul Kohl for his valuable input.
BASIC VISION TRAINING MANUAL

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stages of Learning in Training</td>
<td>1</td>
</tr>
<tr>
<td>Stereoscopes</td>
<td>4</td>
</tr>
<tr>
<td>Sensory Fusion</td>
<td>19</td>
</tr>
<tr>
<td>First Degree Fusion</td>
<td>20</td>
</tr>
<tr>
<td>Second Degree Fusion</td>
<td>24</td>
</tr>
<tr>
<td>Third Degree Fusion</td>
<td>26</td>
</tr>
<tr>
<td>Antisuppression</td>
<td>34</td>
</tr>
<tr>
<td>Motor Fusion</td>
<td>44</td>
</tr>
<tr>
<td>Accommodation</td>
<td>55</td>
</tr>
<tr>
<td>Eye Movements</td>
<td>61</td>
</tr>
<tr>
<td>Study Questions</td>
<td>73</td>
</tr>
<tr>
<td>Further Readings</td>
<td>85</td>
</tr>
</tbody>
</table>
Stages of Learning in Training
Stages of Learning in Training

Pre-performance stage

State the problem; define the goal of the exercise. Inform the patient of the feedback mechanism. Define success.

Performance stage

Patient performs the task and describes what they see. Let patient do the test at the level they are familiar with. Don't talk. Patient is allowed to try without assistance. Ensure that the patient does not become too frustrated when performing the task.

Post performance stage

Critique from the patient on his or her own performance. Critique from doctor. Provide other techniques to improve performance like lenses, sticks, relaxing words.
REFERENCES

Kohl, P. Optometry 720 Lecture, Fall 1997.
Stereoscopes
Stereoscopes

Stereoscopes measure and train vergences, phorias, fixation disparity and various levels of fusion at variable distances. They can also measure other visual abilities (VA’s, color vision, reading fluency, etc…) under binocular viewing conditions.

Key Terms

Prism diopter

is an angular measure of convergence or divergence. It is equal to the tangent of the angle multiplied by 100.

Meter angle

is the amount of vergence, in prism diopters, for a patient to converge to a point in space. It takes into account the patient’s PD.

I.e. at 1M a patient with a 60 pd will converge 6 pd/MA while a patient with a 70 pd will converge 7 pd/MA

Optical infinity

is defined by the power of the stereoscope lenses and the stereoscope “PD” or distance between the optical centers of the objective lenses.

Dioptic vergence

accommodative demand

Relative vergence

convergence over or under the ortho demand

Chiastoptic

crossed/BO demand

Orthoptic/Ortho

uncrossed/BI demand

Brewster Stereoscopes

Optics:

For the Keystone Telebinocular, the separation LS is 95 mm. The standard ortho card separation at infinity is 87mm. A septum is used to dissociate. The objectives are +5.00D lenses cut in half. The lenses are split doublets and are prism corrected for normal ranges of PD’s.
Most people have proximal convergence in scope of approximately 4 pd BO. If the scope's lenses are +5 D, then at 20cm distance, 1 pd=2mm. 95-87mm=8mm \(\frac{8mm}{2}=4 \text{ pd} \). This separation negates the patient's shift in esophoric proximal convergence. This is why Keystone card TS of 87mm theoretically represents orthophoric posture at infinity, despite the LS of the Keystone being 95mm.

Clinical Application 2-1

Figuring the Prismatic Demand of a Stereocard.

The accommodation demand is indicated on the shaft, and can be calculated if you know the power of the stereoscope's lenses and the distance of cards from the lenses. The vergence demand must be calculated and depends on two things: the LS for the scope and the separation of homologous points on the stereocard of choice. It's easy to calculate if the accommodation demand is set to infinity. Use the equation:

\[
V = (P \times LS) - TS/TD,
\]

where

- **V** = vergence demand in prism diopters (positive for convergence, negative for divergence)
- **P** = power of stereoscope lenses in diopters
- **LS** = separation of optical centers of the stereoscope lenses in centimeters
- **TS** = separation of corresponding points of stereogram half-views in centimeters
- **TD** = distance of stereogram from stereoscope lenses in meters.
Example: The AN Series Card #10 has a target separation between the number 1 on each side of the card of 62mm. The OC separation on the Keystone telebinocular is 95mm. The card is positioned at infinity setting.

\[V = (P \times LS) - \frac{TS}{TD} \]
\[V = (5 \times 9.5) - \frac{6.2}{.2} \]
\[V = 47.5 - 31 \]
\[V = 16.5 \]

Positive value represents convergence. The vergence demand is 16.5 prism diopters BO.

If you wish to train accommodation other than at infinity, you need to specify the TD in terms of accommodation demand for that distance.

\[A = \frac{1}{TD} - P \]
\[A = \text{accommodation in diopters} \]
\[TD = \text{distance of the stereogram form stereoscope lenses in meters} \]
\[P = \text{power of stereoscope lenses in diopters} \]

Example: The patient fuses an AN Series Card #10 at 40cm(2.5D) in the Keystone telebinocular.

\[A = \frac{1}{TD} - P \]
\[2.5 + \frac{1}{TD} - 5 \]
\[\frac{1}{TD} = 7.5 \]
\[V = (P \times LS) - \frac{TS}{TD} \]
\[V = (5 \times 9.5) - (6.2)(7.5) \]
\[V = 47.5 - 46.5 \]
\[V = 1D \text{ BO} \]

The demand of the card changes from 16.5pd when the card is moved from infinity to the 2.5D setting.

There are many trade names of Brewster-type stereoscopes and stereograms:

- Biopter and Bioptogram™ cards
- Bernell-o-scope and Bernell bioptogram cards
- Telebinocular (open and closed handles, pedestal mounts) and Keystone stereogram card series (Keystone View):
 - AN series, adult eye comfort series, children's story sets, base-out training units-alpha, delta, gamma, etc; and
 - base-in training units-beta, gamma, epsilon, zeta, and theta
- Correct-eye-scope
Types of Brewster Stereoscopes

Purpose:
Tests many monocular and binocular sensory functions. Trains antisuppression, smooth vergence ranges (isometric) and facility (step vergence) with or without changes in accommodation (tromboning), stereopsis.

Advantages:
Dissociates accommodation and vergence in training; great for building BI ranges on esophores or esotropes; great for tromboning.

Disadvantages:
BO range limited by accommodation: pushing the card further away past simulated infinity makes the card blurry.

Techniques with this instrument:
Tromboning the stereocard closer produces a paradoxical accommodation and vergence relationship, increase stimulus to accommodation and divergence: BIM BOP training.

* Note: Shaft calibrated for the accommodation stimulus.

** Bernell-o-scope**
LS = 90 mm.
Lens Power = +5 D
Stereoscopes

Also tests monocular VA's under binocular viewing conditions.

Numbers are third degree fusion.

Whichever set of pictures that has the R/L next to them is the set for ortho at the infinity shaft setting.

Large pictures are second degree fusion.

Fixation disparity check is alignment of the dots inside the circles.

Alignment of the R/L only related to the ortho position card.

Suppression check is R/L in boxes and dots inside of the circles.

Fig 2-4 Example of Bioptogram Card:

Biopter

Fig 2-5 Biopter

Fig 2-6 Bioptogram™ Cards
Keystone Telebinocular
Optical center: = 95mm
Optical center of handheld = 85mm
Lens Power = +5 D

Keystone Cards Commonly Used Cards:
BU Series by Dr. Fredrick Brock
Purpose:
progression through binocular development
1-4 Luster targets
5-8 Normal retinal rivalry
9-15 Peripheral stereo with macular rivalry
16-38 Float is present, used to reduce phorias and establish fusional hold
9-20 Have peripheral stereo targets
21-34 Introduce linear stereo targets
35-38 Not designed for treatment, used to measure quality of stereopsis

AN Series by Ann Sutton Nichols
Purpose:
develop visual skills, including eye-hand coordination, fusional reserves, accommodation and stereopsis

Unit I
1-4 Version and suppression used for pointer training; stars have minimal fusion demand, 3 and 4 have stereopsis.
Unit II
5-10 Version and suppression, moderate BO
Unit III
11-18 Fusion amplitude, strong BO. Used with pointers. Alternate cards have BI and BO demand; odd numbers have intermediate, near range; even numbers have intermediate/far range.
Unit IV
19-32 Jump duction. Used for increasing stereoscopic projection; each pair has lower jump duction demands (2pd).
Unit V
33-46 Moderate/strong BI and BO jump ductions.
Unit VI
47-56 Farpoint stereopsis. Set card at infinity.
Unit VII
57-66 Intermediate point stereopsis
Unit VIII
67-76 Nearpoint stereopsis. Set card to 2.50
Unit IX
77-86 High BO and BI jump ductions (4-24pd)

Home Training Series (EC Cards)
designed for the hand-held telebinocular or correct-eye-scope (OC 85mm). Good for infinity, near or tromboning.
Includes:
Alpha for exophoria
Delta for high level exotropia
Gamma for children, exotropes
Eta for basic fusional skills
Beta for convergence excess
Gamma for esophoria in children, advanced esotropia training
Epsilon for fusion and stereo with esophores
Zeta for mild esophoria
Theta supplements Beta

Adult Eye Comfort Series
for home therapy to train CI and symptomatic presbyopes. Each card is 1 pd more BO than the previous card. Designed for the hand-held stereoscope (OC 85mm). Top of card to bottom of card is difference of 4 pd BO.

Children’s Stories
Two series of children’s stories with 24 cards in each series (21pd BO-35pd BI)
BO Series:
Cinderella, The
Three Billy Goats,
Bobby’s Christmas,
and The Three Bears.
BI Series:
The Ugly Duckling,
The First Thanksgiving,
The Three Pigs, and Peter Rabbit.

Other Types of Stereoscopes

Aperture-Rule Trainer
(Bernell)
by Vodnoy

Purpose:
Trains near vergence skill at a real 40 cm.

Advantages:
Dissociates accommodation and vergence to train relative fusional ranges.

Disadvantages:
Not good for training at optical infinity.

Optics:
No lenses. Aperture acts as dissociating septum. Single aperture makes visual axes cross in front of viewed target creating BO demand. Double aperture makes visual axes cross further behind the target, creating orthoptic or BI demand. Prismatic demand = card # x 2.5 pd
Use same stereocards for both BI and BO training. Goals: cards 1-12 for BO, and 1-7 for BI. Adjust aperture setting according to AP indicators on cards.

Each card increases in vergence by 2.5 pd.

Stereopsis check is pair of eccentric rings, inner floats backward with both single double apertures.

Suppression check is plus sign and dot.

Fixation disparity check is plus and dot alignment.

Box 2-1 Fixation Disparity Responses
Checking fixation disparity: with the single aperture, patient's right eye sees the left target. The left target is the "+". If patient reports the "+" to the left of the dot, the patient's nasal retina is projecting the target to the left. Patient is eso. If using the double aperture, an eso response will have the "+" reported to the right.
Single Oblique Mirrored Stereoscope (SOMS) a.k.a. Cheiroscope

Purpose:

to test superimposition (transfer), vertical and lateral phorias, stability of binocular posture, quality of binocular vision with manual system involvement; to train suppression, fusional ranges at near

Advantages:

Cheiroscopic drawing and other games hold children's interest; clear bottom available to train distant vergences for DI.

Clinical Pearl:

Methods used to train suppression: A picture viewed by one eye is projected cortically onto the SOMS table and only seen by the fellow eye. The target is traced or filled-in. Suppression control is tip of pencil.

Optics:

Two fields separated by oblique mirror. In order for targets to be fusible they must be mirror images. Viewing distance is 16 cm to table so 1 pd = 1.6mm. Increase BI demand by moving target on the table to the right (as viewed below). Increase BO demand by moving target to the left.

If patient is eso and the left eye sees the top dot, top dot is projected from the nasal retina to the left.
Double Mirrored Stereoscope (Wheatstone)

a.k.a. Flying W

Purpose:
Used at home for basic vergence training.

Advantages:
- BI training, beginning at strabismic angle. Easily changed to a chieroscope for anti-suppression work if NRC exists.

Optics:
- Fixation distance to targets is 33 cm. Optical infinity can be created by using +3.00D lenses, important for DI and Basic Eso.
- Can be adapted as a chieroscope.
- Ranges are 40 pd BI to 50 pd BO. Scale is calibrated at bottom of instrument. Total demand given by adding both settings. Increasing the arms width increases BI demand.

Fig 2-15 Wheatstone

Fig 2-16 Wheatstone Schematics

Fig 2-17 Wheatstone Targets

Fig 2-18 Cheiroscopic tracing using the Wheatstone stereoscope
Sample Problems

Training at Optical Infinity

1. Willy has a PD of 50mm. Using a Bemelloscope, what should the target separation be to produce zero vergence demand at infinity (ortho)?

 90mm separation. Willy's PD is irrelevant.

2. How much should you move the target to get a 1pd vergence change?

 2mm (Bemelloscope has +5 lenses=20cm working distance. 1pd=1/100th of 20cm = 2mm)

3. For 10pd of change?

 20mm

4. What target separation simulates 10BO demand?

 90mmTS(ortho) - 20mm (10pd of change) = 70mm target separation.

5. What TS for 10BI demand?

 90mm+20mm=110mm TS.
Training at Near.
Setting Near Accommodation and Vergence Demands.

1. Using a Bemelloscope, set up a 2.5 accommodation demand.

 \[xD + 5D(\text{scope lens}) = -2.5D \] (wanted)

 \[x = -7.5 \text{vergence} \]

 \[\frac{1}{7.5} = 13.3 \text{cm} \] distance on the scope shaft will simulate 2.5 accommodation demand in real space.

2. What TS will create ortho (zero vergence) at the 2.5D accommodation demand?

 \[\frac{20 \text{cm}}{90 \text{mm}} = \frac{13.3 \text{cm}}{x} \]

 \[x = 60 \text{mm} \]

3. What amount of separation would create a 1pd change at the 2.5D accommodation demand distance?

 \[1 \text{pd change} = 1.33 \text{mm} \] at a 13.3 cm shaft distance.
What You Need to Know About Stereoscopes

Three basic steps to stereoscope problems:

1. Define ortho (no vergence) simulating infinity for a given scope.

 \[\text{shaft setting} = \frac{1}{\text{power of the lenses}} \]
 \[\text{TS} = \text{same as optical center for scope} \]

2. Then find ortho at any given new distance.

 \[\text{accommodation demand} = \frac{1}{\text{new distance}} \]
 to negate accommodation, find the new shaft setting:
 \[\frac{1}{\text{lens power}} = \text{accommodation demand} \]
 new shaft setting
 to negate vergence find new TS
 \[\frac{\text{new shaft setting distance}}{\text{ortho TS at the new distance}} = \frac{\text{ortho shaft dx at infinity}}{\text{ortho TS at infinity}} \]

3. Figure a 1 pd change at that distance given by the accommodation demand.

 \[1 \text{ pd} = \frac{1}{100} \text{th of distance to target} = \frac{\text{new shaft setting}}{100} \]

Tromboning the slide forward, with a fixed TS, increases divergence demand and increases accommodation.

Vergence is dependent on the distance of the card from the eyes and the TS. This is why only accommodation is labeled on the shaft. To train strictly vergence, you must keep accomm steady (no change in shaft) and change only TS.

Relative BO demands will require decreased target separations; relative BI demands will require increased TS.

Target separation of ortho (zero vergence) demand get progressively smaller at closer shaft distances.

Adding plus lenses at near, relaxes accommodation, decreases accommodative vergence, increasing BI ranges.

Adding plus lenses at far, relaxes accommodation, increases convergence response, decreasing BI ranges.
REFERENCES

Vodnoy BE. Aperture-rule orthoptic techniques instructions manual. not dated.
Sensory Fusion
Sensory Fusion

Key Terms

Sensory fusion AKA unification, binocular integration, stereo vision, stereo fusion (however, sensory fusion does not imply motor fusion.) There is a distinction between peripheral and central sensory fusion. For sensory fusion to occur, a *single target must stimulate homogenous points which occupies equal spatial position.*

Stereoscopic fusion is the crown jewel of sensory fusion. Stereopsis refers to the measurement of stereo fusion, a threshold stereo acuity.

Stereo localization is how accurate the location is on the z axis.

Stereo mobilization is the speed of the stereo response.

Theory of Summation: Visual unity is an additive process between the right and the left cortical images.

Theory of Localization: One image is really a projection of two identical images to the same position in space.

Correspondence: is a map for space including up, down, left, right and depth and code fusional movements. There are no retinal directional cells. Spatial values are learned.

Lateral Disparity: acts as a cue for binocular depth judgements. Vertical disparity gives no depth cues.

Single Binocular Vision: Morgan 1960 says we must have a good monocular motor system, simultaneous binocular vision, coordinated EOM, and a corresponding sensory system to give us sensory fusion.

First Degree Fusion

Definitions

first-degree fusion

a.k.a. simultaneous perception, Worth fusion level, requires non-fusible targets with no contours or with non similar contours seen with both eyes at the same time; first degree targets used to test and train vertical and lateral phorias, and suppression
contour rivalry

two different contours in the same visual space. Contours must be set at person's phoric posture or be a large target so that no matter where the eye points, there is a target.

Tests of First Degree Fusion

BU #1

Purpose:
Testing measures quality of huster, phorias, quality of macular transfer at infinity.

Indications:
- Minimal fusion response suspected.
- No contour, no acuity demand (except dot)

Disadvantages:
- Proximal convergence in scope.

Procedure:
- Side with dot is placed opposite the hand holding the Russel ring. Targets are colors/loop and dot.

Interpretation:
- Fusion response is colored dot.
- Placement of the ring corresponds to where the fovea of the eye of the same side of ring is pointing.
- Ortho posture response is ring at the center of the card.
 - Placing ring left and above of the center of card: patient is exophoric and hyperphoric (as seen above).
 - Placing ring at the center of the card: patient is ortho.
 - Placing ring to the right of center is eso.
- Color of field inside and outside of ring indicates amount and type of suppression.

Dog and Pig

Purpose:
Tests lateral phoria.

Indications:
- Part of Keystone series.

Disadvantages:
- Proximal convergence in scope.

- Note: Different contours, not able to overlap dog and pig because of vertical separation.
Cheiroscopic Tracings

Purpose:
Tests first degree fusion (or suppression), lateral and vertical phorias, stability of binocular posture, quality of binocular vision when manual system is involved at infinity.

Advantages:
more real life test of fusion.

Procedure:
Cheirogram is placed on side opposite the dominant hand. Patient draws with dominant hand. Then have patient trace again with non-dominant hand.

Interpretation: (based on telebinocular at optical infinity, not a cheiroscope)
- Binocular posture is represented by the separation between a point on the cheirogram and that point on the tracing. 2mm = 1 pd.
- Ortho posture = 68 (±2mm).
- Eso posture separation of images drawn less than 68mm (±2mm)
- Exo posture separation more than 68(±2mm).
- Suppression cheirogram not seen; no transfer of image, no first degree fusion. Eye suppressing is on the same side as cheirogram. Not seeing the pencil is suppression of the eye on the opposite side of the cheirogram.
- Stability of binocular posture represented by reported or actual lateral shifts in tracing. With right hand, a shift to the right = exo posture. With left hand, a shift to the right = eso posture.
- Quality of first degree fusion represented by constant perception of pencil tip.

Van Orden Star

Purpose:
measures posture and stability of binocularity with bilateral manual involvement, quality of binocular vision/first degree fusion with bimanual involvement (suppression or not) measured at infinity.

Procedure: Patient must be able to identify middle of the paper before test can continue. One pencil in each hand. Patient looks at center and draws simultaneously from each diagonally opposite point until pencils meet in perceived center.

Interpretation:
- 2mm = 1 pd
- Ortho posture = 68mm(±2).
- Exo> 68mm(±2) or outside lines AA.
- Hyper projection Apex higher than the other represents (above line BB) of eye on that same side.
Sample Problem
Example of measuring lateral and vertical phoria with first degree fusion

1. The optical centers of a +5 lens stereoscope are 85mm. 5 dots are aligned vertically in front of left eye. The patient with a marker in right hand, places dots where dots appear to be. Assume the patient is using fovea of left eye to see dot. The patient marks dot at 65mm in the right field. What is the patient's phoria if measured at the infinity shaft setting?

\[
85\text{mm (ortho)} - 65\text{mm} = 20\text{mm}
\]
\[
\text{If } 2\text{mm} = 1\text{pd}, \text{ then } 20\text{mm} = 10\text{pd Exo}
\]
Second Degree Fusion

Definitions

Second-degree fusion requires fusible targets/within the range of motor ability, similar contours and same lateral separation

Tests of Second Degree Fusion

Keystone 4-ball fusion card
Interpretation:
- 4 balls-not fusing
- 3 balls-fused
- 2 balls-suppression
- 3 balls with top to the right-eso

AN #1 Card
Purpose:
measures second degree fusion, fixation disparity, quality of binocular vision when manual system involved.

AN #2 card
Purpose:
measures fixation disparity and at least second degree fusion because of similar targets.

Procedure:
two pick up sticks, one for each hand are used to point to numbers around the star.

Interpretation:
- Every common point has same separation (definition of flat fusion target) of 78mm Odd numbers only seen by one eye, even numbers by the other.
- Suppression: numbers missing
- Fixation disparity determined by position of the sticks relative to star point.
- Stick pointed nasal and superior to the star tip represents eso fixation disparity and hyper (of eye corresponding to that stick) fixation disparity.
- The appearance of the tips (macular) or shaft (paramacular) of the sticks determines quality of binocular vision.
Worth Dot

Interpretation:
- Red eye sees illuminated red dots
- 2 dots: green eye suppressing
- 3 dots: red eye suppressing
- 4 dots: normal
- 5 dots: diplopic

Fig 3-8 Worth Dot
Third Degree Fusion

Definitions

third-degree fusion
- a.k.a. stereoscopic fusion, binocular depth perception, requires binocular vision to perceive float, or ability to interpret monocular cues such as parallax, texture, overlap, shadowing, and velocity, which also give depth perception.

stereothreshold
- the minimum distance you can tell it's at a different position. Vertical disparity does not cause depth awareness.

reduced volume of field
- converging and diverging equal amounts without the perception of equal amounts of float. Can be helped by replacing opaque backgrounds with clear backgrounds for uncrossed targets.

contracted volume of field
- float perceived less than the mathematical expected.

global stereopsis
- requires higher perception, believed to be learned/developed. Rare to train a strab to perceive unless had experience prior to strabismus. Ex: Butterfly, magic eye

local stereopsis

spatial summation
- more looks lead to increased depth perception

temporal summation
- longer looks lead to increase in depth perception

SILO
- Float follows the rules of SILO. With BO/crossed targets, as you increase BO demand, target appears to get smaller, move in and shows with motion (paradoxical parallax). For BI/uncrossed targets, as you increase BI demand, target appears to get larger, move out and shows against motion

Fig 3-9 SILO
Three scenarios:

- **airplane** Target: a big runway from far away distance. Given 1 sec to look to judge depth

 Change in size is 67x more effective in judging depth than disparity.

- **cricketball** 2 1/2 inches distance of 50 feet, velocity 90mi/h. Given .25 second to look

 Change in disparity is 2.4x more effective than size.

- **fly** .2cm target, velocity 5cm/sec at 50cm distance.

 Change in disparity is 72x more effective than size cells.

Summary: Given three factors: dx, size and speed, change in disparity is most useful for small, fast, close objects.

Tests of Third Degree Fusion

Vectographic Tests of Stereoacuity

Contoured

Stereofly

Purpose: nearpoint testing, measures local stereopsis

Procedure: Use glasses to detect presence of float.
Turn the fly upside down and left eye sees left target (uncrossed) and the fly is seen as floating behind the plane.

Interpretation: • + or – float
• Fly 2000 arc seconds
• Animals 400, 200 and 100" Good for 2-3 years
• 4-ball Wirt 800" to 40"

Stereo Reindeer

Purpose: near test

Advantages: comes with contour circles on opposite page which is better than 4-ball because you only have a 1/6 chance of getting it right.
AO Vectographic Slide
Purpose: farpoint testing

See Antisuppression section for details.

Figure 3-12 AO Vectographic Slide

Non Contoured/Global

Randot Stereo Test

Purpose:
nearpoint testing, measures both global and local stereopsis

Procedure:
targets generated with computer.

Interpretation: Test includes:
- randot forms gross test: 600" at 16 inches.
- randot forms graded (animals): 400", 200" and 100" at 16 inches.
- randot circles: 8 grades from 400" to 20" at 16 inches.
- Circles and animals are not random dot stereograms

Random Dot E Stereo Test

Purpose:
near and far testing, measures global stereopsis

Procedure:
comes with blank control card. Single element display crossed and uncrossed E. Can test at any distance, a chart is provided to help you figure demands. Test threshold by backing up. Need 3 trials at each distance. Test OK for 4 year old. Need to know E laterality.
Disadvantages:
for myopes because VA decreases with distance.

Advantage:
a performance test: gives good information about Rx.

Stereo Butterfly

Purpose:
near testing, measures local and global stereopsis

Interpretation:
- global stereopsis with 3 levels of float:
 - upper wing 2000",
 - bottom wings 1150"
 - tip of abdomen 700"
- animals and circles similar to Stereo Fly

Fig 3-15 Stereo Butterfly
Non Vectographic Tests of Stereoacuity

Frisby Stereo Test

Purpose:
nearpoint test based on Random Dot design. Real space, no glasses needed.

Interpretation:
- measures 20-880"

Lang

Purpose:
nearpoint test

Advantage:
A randot stereogram/global. **Highest fail rate for small angle strabs.** Easy to use with kids and does not need glasses.

Disadvantage:
Patient must be directly centered with no target movement.

Optics: multiple cylindrical prism overlay separates eyes at set angle.

Synthetic Optics Viewer-Free Stereo Test

Purpose:
nearpoint test copied Wirt circles, animals and butterfly with similar prism overlay as above. Measures global and local stereopsis.

Disadvantage:
Patient must be directly centered with no target movement. The cylindrical prisms cause an “in” then “out” effect as the stereo target is moved right or left of straight ahead alignment.
Keystone Aviator Series

Purpose:
farpoint testing in stereoscope

Advantage:
test measures different stereoacuities at different visual acuities Monocular cues confusing.
Bigger and darker letters are perceived as closer.

Measures to 10 arcseconds. Each card measures one level of stereopsis.

Procedure:
20 cards. Test every other card until you get a miss, then test one card above and below.
Two thirds correct needed on each card.

BVAT

Purpose:
farpoint test

Procedure:
time shuttered glasses

Advantage:
tests crossed disparity at a distance alignment is not critical

Disadvantage:
Expensive can cause seizures

Multi-soreto Test

Purpose:
farpoint stereo test.

Interpretation:
each line has different disparity Down to 11'

Howard-Dolman

Purpose:
farpoint testing.

Advantage:
stereoacuity in real space.

Procedure:
patient moves rod by way of strings until it appears in the same plane as a fixed rod.
Sample Problems

1. Given amount of convergence, figure total prism diopter for patient's pd and convert to meter angle. Target separation is 12mm, tested at 40cm distance. Patient's pd is 60cm. Where is the float?

At 40cm, 4mm = 1pd, so 12mm = 3pd
\[x \times MA \times pd \text{ demand} = 6 \text{cm (patient's pd)} \]
\[MA = \frac{3}{6} \]
\[MA = 0.5 \]

\[2.5 \cdot MA \text{ (at 40 cm)} + 0.5 \cdot MA = 3.0 \cdot MA \]
\[\frac{1}{3} \cdot MA = 33 \text{ cm from eye or 7 cm from plane} \]

2. Target separation for the right eye and left eye wings are 7mm. Testing distance is 40cm. Patient's pd is 60cm. Where should the float be perceived?

\[\frac{400 \text{mm} \cdot x}{60} = \frac{x}{7} \]
\[x = 42 \text{mm} = 4.2 \text{cm} = 1 \frac{1}{2} \text{ inches from the plane} \]

3. If at 50cm, you measure 504", what is the disparity at 200cm?

Use linear stereoacuity. Answer: 126"

\[\frac{200}{50} = 4 \]
\[\frac{504}{4} = 126" \]
Antisuppression

Two of the most common causes of suppression in non-strabismics are:

1. anisometropia
2. aniseikonia (5% of anisekonics suppress)

Reasons for suppression include:

- to relieve double vision (#1 reason)
- to relieve inequality in images
- to eliminate difficulty fusing

Suppression does not necessarily imply misalignment.

Suppression is non-pathological. It happens only under binocular conditions.

<table>
<thead>
<tr>
<th>Zone/Degree of field</th>
<th>foveal (<1°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>central (>1° but <5°)</td>
</tr>
<tr>
<td></td>
<td>peripheral</td>
</tr>
<tr>
<td></td>
<td>total/partial</td>
</tr>
</tbody>
</table>

Distance

Field of view involved

Frequency (Example: 3/4 times at near, permanent/temporary)

Intensity shallow or deep. Related to naturalness of environment. Shallow to deep tests:

Physiological Diplopia, Penlight, pola-mirror, Vis a Vis, Vecto, Bar Reader, Brewster, Wheatstone, Red Lens Test, Worth Dot
Other Terms Used to Describe Suppression

- **gross**: 20-30° of field suppressed-total field
- **absolute**: all distances
- **non-absolute**: certain distances
- **complete**: all distances
- **non-complete**: certain distances
- **total**: whole eye
- **partial**: part of the eye

70-Year History of Binocular Refraction

Turville

use of septum to separate OD and OS images.

Humphress Infinity Balance

could suspend central vision by using plus to blur out. Adds +0.75 over one eye to allow peripheral fusion. Not monocular acuity under binocular conditions.

Grolman

AO Vectographic Slide
gives a binocular refraction. Both eyes are open during most of the exam.

Advantages include:
1. cyclophoria eliminated giving more control over cylinder axis
2. accommodative control under associated conditions to give more accurate sphere
3. constant pupil size
4. confirm malingering
5. controls convergence
6. better spherical balance

Disadvantages:
1. alignment can prove difficult
AO Vectographic Slide

Box around the acuity 2 chart is seen by both eyes.

Suppression controls are the shapes on the box seen by the left eye.

Clock dial central fusion lock: two dots and central bar.

Mixed acuity chart 20/40, 20/30, and 20/20. Use for SBVA.

Fixation Disparity with no central fusion lock. Chart border acts as peripheral fusion lock.

Vertical Lines:

Eso FD

Stereo Acuity Dots

Horizontal Lines:

OD hyper

Sets of acuity charts. Top seen by right eye.

Suppression controls the shapes on the box seen by the right eye.

Split chart for JCC and 20/40 distance equalization

Fixation Disparity with central fusion lock.

Fig3-21 AO Vectographic Slide

If patient breaks fusion and overlaps charts, compensate by adding vertical prism and increasing room lighting.

Polarized glasses give better alignment than the phoropter's polarized lenses.
Antisuppression Testing

Worth Dot
Purpose:
tests fusion at any distance.

Recording:
Done in all fields of gaze. Record speed of response and phoric posture or suppression behavior:

Example: Red Lens at far (20ft)

Interpretation:
- 2 red dots green filtered eye suppressing
- 3 green dots red filtered eye suppressing
- 4 dots second degree fusion
- switching between 2 and 3 lights alternate suppresser
- 5 dots diplopia, no suppression

Red Lens Test
Purpose:
Patient views a fixation light with a red lens in front of fixating eye.

Recording:
distance, field of gaze, phoric posture if not fused.

Interpretation:
- two lights diplopic, no suppression
- one red light suppression
- one white light suppression
- one pink light fusion, no suppression

Note: Depth of suppression is assessed by adding other red lenses to fixating eye until diplopia elicited. The more filters needed to elicit diplopia, the deeper the suppression.

Brock String
Purpose:
trains physiological diplopia, smooth and jump vergences, pursuits, and suppression with red/green glasses and red/green beads on white string.

Fig 3-23 Brock String in use
Interpretation:
- patient sees single bead with double string crossing at bead: normal
- focused bead single, other two beads double: physiological diplopia: normal
- only one string or portion missing: pathological suppression
- string crossing in front of bead: over convergence
- string crossing behind bead: under convergence

Note: minus lenses make string cross in front; if using R/G glasses, put green lens over suppressing eye. The red lens blocks out more light and could cause suppression easier.

String appears crossed with the red string coming from the green eye. Record the effect of +/- lenses.

Pola Mirror Test
Purpose:
suppression test. Patient looks at self while wearing polarized lenses. The patient’s right eye will see itself projected directly in the mirror. If the patient sees both eyes, they are not suppressing.

Advantage:
great for kids.

Vis-a-Vis
Purpose:
suppression test. Partners wearing polarized lenses and view each other. Use the wink game. Polarized lenses are set at 45° and 135°. The right eye of one person sees the left eye of the other. Ask patient Which eye am I winking?

Bar Reader
May be R/G or polarized. An overlay for reading material.
Purpose:
antisuppression

Advantage:
patient able to use own reading material

Notes: large and small sizes; minus makes the green bar easier; small polaroid bars do not polarize reading material when strip of polaroid is against the page.
Sensory Fusion

AO Vectograph
see diagram

Mallot Box

Borish Nearpoint Card

Vectograms

Tranaglyphs

Physiological Diplopia

(Also Van Order Star, AN Star, Dog and Pig, 4-ball fusion, major amblyoscope targets, color luster, anything that presents two different targets to the eyes separately with septum)
Antisuppression Training

Induced Diplopia
 with prism
 physiological diplopia with Brock string or just using two objects at near and far distances
 free fusion thumbs
 with handheld mirror as a septum while superimposing objects or being aware of objects in front of left and right eyes

Illumination
 Neutral density filter in front of good eye
 increase light on suppressing eye’s target

Translid Binocular Interaction Trainer (TBI)
Purpose:
 breaking suppression, using alternately flashing light

Disadvantage:
 may cause seizures and may not be used with epileptic patients.

Techniques with this instrument:
 alternately flashing light bulbs placed directly on closed eyelids or in front of open eyes. Can be clipped to separated fusion targets.

 Note: The Bartley phenomena technique uses 6-10 cycles/second flashing unilaterally or binocularly.

Occlusion

Patching direct technique penalizes the good eye and forces suppressing eye to stay on.
Indirect technique patches the suppressing eye and allows the patient the chance to find normal correspondence.
Fogging good eye.

Movement

 intermittent stimulation by finger flash in front of suppressing eye
 wiggling mirror in amblyoscope
 tactile rubbing target
 vibrating pen, tracing in cheiroscope
 fusion aider
Split Fields

TV Trainer
Purpose: antisuppression training

Advantage: excellent compliance, R/G or polarized

Disadvantage: not for deep suppression or constant strabs

Vectograms

Tranaglyphs

Bar readers

Sherman Cards
Purpose: antisuppression

Note: Green lens sees red numbers and symbols. Red lens sees black letters and symbols.

Fig 3-29 Sherman Playing Cards

Naturalness of environment

From in instrument to free space: Amblyoscope - Brewster - Aperture Rule - Vectographs - Tranaglyphs - Brock String
Other Antisuppression Training Tips

Make sure RE is corrected.

Address pathology concerns that could be creating unequal images.

Start with big targets.

Peripheral targets before central.

More detail is easier. (Not to Kohl)

More interesting.

Vectograms before tranaglyphs.

Multiple looks to few looks.

Longer looks to short looks.

Stationary to moving targets.

Work "unreal" space to real.

Start dissociated to fused.

Use real colors to unnatural colors.

Start penalizing good eye with plus or filters and work towards equally balanced.
REFERENCES

Visual Science Dictionary
Motor Fusion
Motor Fusion

Convergence Training Variables

1. Tonic vs. phasic

<table>
<thead>
<tr>
<th>Easier</th>
<th>Harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow change in disparity in BO direction (note break and recovery)</td>
<td>Jump vergence vectograms between high/low BO</td>
</tr>
<tr>
<td>Slow change in disparity in BI direction (note break and recovery)</td>
<td>Jump vergence vectograms between high/low BI</td>
</tr>
<tr>
<td>Jump vergence vectograms between high/low BO</td>
<td>Random jump vergence vectograms</td>
</tr>
<tr>
<td>Jump vergence through cover/uncover and look-aways</td>
<td></td>
</tr>
</tbody>
</table>

2. In instrument vs. out of instrument

3. Target size big vs. small
 - Quoits to Clown to Mother Goose to Spirangle to Chicago to Skyline

4. Distance dependent

5. Smooth vs. jumps

6. Static vs. dynamic targets

7. Gross motor action body to head to eyes

8. BIM-BOP Training
 - BIM/BOP with vectograms or tranaglyphs
 - Disparate to limits of BI while looking through -1.00
 - Disparate to limits of BO while looking though +1.00
 - Disparate to letter C (BI) while looking through -1.00; flip to +1.00
 - Disparate to no. 3 (BO) while looking through +1.00; flip to -1.00
 - Repeat in 3 PD steps to limit of BI and BO
 - Increase power of flipper up to +/- 2.50 repeating steps above

Divergence is the Hardest to Train

1. Set up conditions that promote far-away feeling

2. Visualization techniques/ deep breathing

3. Rebound (BO first to relax into BI)

4. BOM / BIP

5. As little proximal effect as possible: clear lifesaver, clear SOMS bottom, big sloppy targets with little detail, free space, lower lights, distance
Brock String
See suppression training

Tranaglyphs and Vectograms
See vectogram and tranaglyph training

Rotoscope

![Fig 5-1 Rotoscope](image)

Troposcope

![Fig 5-2 Troposcope](image)

Loose prisms

Aperture Rule
See stereoscopes

Life Saver Cards
Purpose:
convergence, divergence training

Note: Available in clear or opaque background. No glasses required. Demand for both BI and BO increases as you try to fuse wider separated targets or move the card closer. Clear card best for BI and best at end of training. Patient should see three lifesavers when fused. Suppression control is luster, float, and complete letters in words. Stereopsis is noted by the middle circle being perceived closer for BO and further away for BI

![Fig 5-3 Lifesaver Card](image)
Eccentric Circles

Purpose:
Free space convergence

- Note: Inner circle floats in front when diverged. And floats behind when converged.

![Fig 5-4: Keystone Eccentric Circles](image)

3-Dot Card

Purpose:
trains convergence at near.

- Note: One side has red dots. The other side has green/blue dots. Suppression control: fused dots appear as a blended color/luster.

![Fig 5-5: 3-Barrel Card](image)

Stereograms

- Binaco Cards
- AN jumps
Vectogram Training

Vectograms are polarized stereograms viewed through polarized glasses at right angles of 45 and 135 degrees. They are used for patients with normal sensory fusion who need training in fusional vergence amplitude and facility. They provide the advantage of free space training.

The stereo optical set contains 11 polarized vectograms: 8 variable/split and 3 fixed. Variable vectograms discussed in class in order of difficulty include: Quoits, Clown (Topper), Mother Goose, Spirangle, and Chicago Skyline. Figure 8 is a non-variable vectogram used to specifically train stereopsis. Letters indicate BI demand. Numbers indicate BO demand.

QUOITS
Trains peripheral stereopsis at near and far if projected. Evaluates float, localization, SILO and parallax motion. Trains vergences with large, easily fusible targets.

Suppression control: cross at top of ring

Calculating Float

Problem: Patient PD is 48pd. Vecto demand set at 6BO when using at 40cm. At what distance from the vecto should the patient report the float?

MA demand of testing distance + demand for patient's PD = total near meter angles

\[\text{MA demand} \times 2.5 + \frac{6\text{BO}}{4.8\text{cm}} = 3.75\text{MA} \]

\[\frac{1}{3.75\text{MA}} = 26.7\text{cm from patient} \]

40cm - 26.7cm = 13.3cm from the vectogram

CLOWN
Trains near and far stereopsis. Letters on blocks require fine visual acuity. Trains vergence ranges.

Suppression control: R/L box on right-hand side
MOTHER GOOSE
Trains near stereopsis and vergence ranges.
Contains 3 vergence demands. When at the 0pd indicator, Bo Peep is at the plane, Humpty Dumpty is always 2pd BI and Old King Cole is 2pd BO relative to Bo Peep. This allows for more advanced jump ductions.

Suppression controls: king’s pipe/bowl, Humpty’s hat/cane, and Bo Peep’s sheep/staff.

SPIRANGLE
Trains near stereopsis. The vergence demand increases from the center to the outside by 6pd BO. This remains true for BI and BO settings. Therefore, the outer spiral will always appear closer to the patient. Requires fine visual acuity. Letters also contain different disparities and appear to float in comparison to the borders of the boxes.

Suppression control: R and L, letters within box in the middle and at the end of the spiral are seen separately by OD and OS

CHICAGO SKYLINE
Trains near stereopsis and vergence ranges.
The plane and skyline have opposite vergence demands. If the plane is BO, then the skyline is BI. This allows jump ductions between the plane and the skyline.

Suppression control: R and L

FIGURE 8
Non-variable. Trains depth perception.
RANDOM DOT VARIABLE BUTTERFLY
Very difficult to perform cover/uncover/recover training method because of no contours.
Requires polarized glasses at 90 and 180 degrees.

VERTICAL MINI VECTO BC 216
HORIZONTAL MINI VECTO BC 275
Contains 3 acuity controls: 2 monocular and 1 binocular
Anaglyphs

Tranaglyphs are a tradename of Bernell. They are more difficult to use than vectograms because of a chromatic difference between the R/G targets. They require R/G glasses and work to eliminate suppression while enhancing fusion and stereopsis. The Bernell tranaglyph series includes:

BC 50 Series
Non variable. Build horizontal fusional convergence and divergence. 2pd increments from ortho to 30pd as progress through the 6 frosted slides. Opaque background makes BI training harder. BI and BO trained separately as flip over slide or reverse R/G lenses.

- BC51 Bike, Bowler 1-3pd
- BC52 Horse 4-10 pd
- BC53 Bowler 1-3pd
- BC54 Football, Skier 20-22 pd
- BC55 Football, Baseball 24-26pd
- BC56 Race Car, Snowmobile 28-30pd

BC 70 Series
Non-variable. Trains vertical fusional reserve. Frosted slides .25-3.0 pd in .25 D increments. BU and BD trained by flipping slides or reversing R/G glasses. Float achieved by small amount of lateral separation.

- BC 71
- BC 72

BC 500 Tranaglyph Kit
Variable. Train initial reserves through peripheral and central fusion as well as stereopsis. Included 3 variable slide pairs; single ring, double ring, double ring with suppression control.

- BC 510 Peripheral Fusion
- BC 515 Peripheral Stereopsis
- BC 520 Peripheral & Central
BC 600 Tranaglyph Kit
Variable. Included 5 pairs of slides, which can change ortho to 30pd for BI/BO fusional vergence training. Multiple disparity targets within each slide. These lines are very thin and make fusion more difficult.

BC 601 Bunny
BC 605 Spiral
BC 606 Clown
BC 607 Airport
BC Sports

BC 920 Tranaglyph Trainer
Variable. Hand-held slider with horizontal range of 36pd BI/BO. Comes with diffuser, suppression control, and accommodation demand. BC 925 Tranaglyph Kit includes a +/- 5D vertical scale and a BC 51 slide.

BC 801 Slide Set
Combines both vertical and horizontal targets. Variable fusional training for horizontal or vertical by rotating the targets and 550 holder 90 degrees. Box-X-O anti-suppression included.

BC 802 Slide Set
Has two horizontal targets with differing stereoscope demands and also has monocular clues.

Polachrome Trainer
Purpose:
Provides coherent lit background and holder for vectograms and tranaglyphs. Allows for easier BI float.
Training Tips for Tranaglyphs

Put demand within patient's range of motoric fusion

Use Polachrome trainer as a holder

Use a target (i.e. a piece of tape or a coin) to act as a comparison to floating target

Start with single and move to multiple targets

Give "guided tours" through multiple target tranaglyphs

Use thick-lined targets first

Show crossed and uncrossed demand within the patient's range and compare back and forth. Use multiple disparity targets for this to increase their sensitivity to disparity.
REFERENCES

Kohl P. Optometry 720 Lecture. Fall 1997.
Accommodation
Accommodation

Accommodation training is used to treat
asthenopia
blur
enhancement for athletes
strabismics, amblyopes
reading problems
AC/A disorders
high exo
CI
eso

3 Aspects of Accommodation

Amplitude
Train to norms for relaxation and stimulation of accommodation.

Facility
Train to physiological maximum and age norm for
distance rocks and lens rocks.

Posture
Relates to hypo and hyper accommodation
More difficult to train.
Accommodation

Accommodative Tests

Amplitude

Acuities

Near point of accommodation. Do binocular first. If there is a problem do monocular. Apply Donders. Monocular should equal binocular otherwise there may be an accommodative/convergence problem.

Far point of accommodation (7,7a, Red/Green)

#19

#20 PRA Tests relative amplitude: accommodation freed from vergence. Similar to #17 BI.

#21 NRA Again testing binocular first and compare to monocular. Should be equal or have A/V problem

Posture/Accuracy

MEM

Bell

Book

#14a, #14b

#5

Facility

Distance rock

Lens rock

57
Accommodative Training
Train monocular to biocular to binocular

Monocular Training
1. Start with patching the worst eye and rock with plus lenses
2. Then patch the good eye and start with the bad eye rocking with plus lenses
3. Good eye begins with minus rocks
4. Bad eye begins with minus rocks
5. Rock minus to plus with flippers help straight up, changing occluder eye to eye

Norm for Lens Rock
12-15 cpm

Monocular Fixation in Binocular Field (MFBF)
- Overlays and filtered glasses
- Reading material with MKM Reading Test
- Half a Vectogram
- +/- flips in stereoscopes

Before Training Binocular
1. must be age expecteds
2. OD = OS in facility and amplitude

Binocular Training Targets
- Brock string with letter demand
- Vectograms
 Spirangle because of acuity demand
 Clown lettered blocks
 Aperture Rule

Dissociative Training
(disagreement if before or after binocular training)
Split vectograms
Prism dissociation
BIM/BOP Training

- BI trained through minus. Helps with #17 on 21-point exam.
 BIM training on double aperture rule with flips
- BO trained through plus. #16
 Aperture rule

CI/Accommodative Insufficiency BIM double aperture with flips
Vectogram
Stereoscope tromboning. Converge while relaxing
accommodation, diverge while stimulating accommodation

Symptomatic VDT/Computer Users

Predictive tests
MEM
Accommodative Rock

Problems
1. Target is poor quality. Too much flickering.
2. Glare from image of convex screen and from light colored clothing
3. Don't blink

Types of Accommodation Dysfunction

Accommodative Excess
#7 more minus then #4; over-convergence on Brock, VO
No plus acceptance on MEM, #14b, #5
Treat by eliminating cause, VT and Rx to reduce accomm

Accommodative Insuff
Fail both monocular and binocular accommodative rocks
and amplitudes
True accommodative insufficiency is failure of monocular
flips.
Plus lenses first then VT

Accommodative Infacility
Fail both monocular and binocular rocks, but amplitudes
are normal
Treat with VT then plus lenses

Ill-sustained Accom.
Increasing difficulty with -2.00 flippers
Treat with VT (use lenses only as crutch)

Accommodative Convergence Imbalance
REFERENCES

Kohl, P. Optometry 720 Lecture, Fall 1997.
Eye Movements
Eye Movements

Eye movements and Reading

- **Sherman study**
 Done on 40 children, 7-11 yo with known reading disabilities. Found that ocular motor pursuits and saccades were the worst skills.

- **SUNY study**
 Done on 10th graders to college age who were poor readers. Using the Eye-Trac, they tested using material that required higher comprehension abilities with 5th grade reading material. If the patients had only perceptual problems, they should score well on the 5th grade reading material. These kids didn't have a difference in scores between the two levels of reading. Therefore these students were poor readers because of poor skill levels. VT improved reading to college level in 6 to 8 weeks.

- As a child develops over a period of time, a natural increase in all abilities occurs. Studies have shown that there is a supralinear relationship in vision training and performance, showing that VT is helping above the expected development that happens out of normal maturation.

- To be a good learner, we must be strong visually. Reading difficulties can be due to perceptual problems or skills problems (being either decoding or oculomotor movements). Perceptual problems are not a quick fix.

Physiology of Eye Movements

- 500-1050g of muscles around the eyes
- 10g of movement required for pursuits
- sustainability, speed, and accuracy all require additional energy
- between 10-12 degrees for most eye movements
- we use head movements if we look outside this range
- saccade latency .12-.16 sec
- saccades 600 degrees/sec
- pursuits 30 degrees/sec
- head movements 8 degrees/second
- vergence 10 degrees/sec
- cyclo <7 degrees/sec
- pursuits used in the act of learning to do visually-directed fine motor tasks like sewing
- highest form of fine motor skill is handwriting
Signs and Symptoms of Oculomotor Problems

- read and lose place
- using one eye
- re-reading
- HA's
- fatigue
- poor in sports
- doesn't like reading
- poor penmanship
- don't like to watch spectator sports
- may be developmentally delayed
- reading disorder
- strabismus

Saccadic Testing

Percon

Problems: Test didn't relate to reading

Pierce

Problems: Tests only really big eye movements

King Devick

A separate score for errors and time.

Consists of:

I Demo- numbers spaced with directional arrows

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>4</th>
<th>1</th>
<th>8</th>
<th>0</th>
</tr>
</thead>
</table>

II Subtest with lines

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>5</th>
<th>4</th>
<th>2</th>
<th>7</th>
</tr>
</thead>
</table>

III Subtest without lines

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>3</th>
<th>4</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
</table>

IV Subtest with stimuli more crowded but same number of elements

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>1</th>
<th>6</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
</table>

Normed on 10,000 kids and became part of the New York Vision Testing Battery. Could be administered by a teacher. Normed for errors, age and by subtests.

Problems: you had to know your numbers and be able to say them quickly and no prescreening.
DEM
Normed on 6-14 yo
Pretest administered to <6 yo and anyone of concern. Screens out language problems.
Relate scores to age and grade by month in school.
 Allows you to see if patient is working at appropriate age level and to pinpoint problems to eye movement and/or automaticity problems.
A+B have the same amount of numbers as in Test C.

Vertical Test A and B
Instructions: *Read the numbers down the columns as quickly as you can (finger motion down columns). Do not use your finger, only your eyes.*
Vertical test tells about **automaticity** because oculomotor skills required here are very easy, just one fixation per line. It’s a baseline performance.
Vertical score is determined by adding the time to complete both A and B. No errors are taken into account.

<table>
<thead>
<tr>
<th>Vertical time = A+B</th>
</tr>
</thead>
</table>

Horizontal Test C
Tests “sophisticated” **oculomotor ability** to saccade. Horizontal score must be compensated for if errors occur.

![Figure 6-2 DEM Horizontal Subtest](image)

Horizontal Time = Test C x [80/(80 - o + a)]
where o = omissions and a = additions(numbers repeated or added)

Other Calculations

Ratio = horizontal time/ vertical time

Total Error Score = (s + o + a + t) errors
where t = transposition errors

Percentile is figured for the vertical time, horizontal time, the number of errors and the ratio scores.
Age equivalent is whatever age would at least give the child a 50th percentile score.

Faults of the DEM:
The standard deviation is so high that you can’t really say an above or below score is significant.
Test-retest problem between the 1st and 2nd tests.

Advantages of the DEM:
Normed on a wider age span than King Devick.
It has more numbers and they are placed more appropriately for actual saccade sizes in reading with large and small saccades.
Prescreens for language problems.

Clinical Application

<table>
<thead>
<tr>
<th>Type</th>
<th>Behavior</th>
<th>Normal in horizontal, vertical and ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Behavior</td>
<td>high ratio (horizontal more difficult); represents oculomotor problem</td>
</tr>
<tr>
<td>Type II</td>
<td>Behavior</td>
<td>normal ratio but abnormally high horizontal and vertical; horizontal time has been influenced by poor automaticity tested in the vertical test; represents deficient automaticity in number-calling skills.</td>
</tr>
<tr>
<td>Type III</td>
<td>Behavior</td>
<td>high ratio with high horizontal and vertical test times; represents oculomotor and automaticity problems</td>
</tr>
</tbody>
</table>

Ober 2

- fixation shown by straight line
- saccade is flat part of step
- return sweep saccade
- regression is in the opposite direction of normal saccade

Fig 6-3 Ober Printout
This Ober test result shows poor eye movements:

![Fig 6-4 Results due to poor eye movements](image)

This Ober test result shows poor fixation ability that might be found on an ESL patient:

![Fig 6-5 Results due to English as a second language](image)

In normal eye movements, the length of fixation is approximately equal to the saccade movement.

<table>
<thead>
<tr>
<th></th>
<th>College level</th>
<th>1st grader</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixation/words</td>
<td>1 fix/2 words</td>
<td>1 fix/.5 word</td>
</tr>
<tr>
<td>regression/words</td>
<td>1 regress/10 words</td>
<td>1 regress/2 words</td>
</tr>
<tr>
<td>avg. span of recognition</td>
<td>2 words/fixation</td>
<td></td>
</tr>
<tr>
<td>duration of fixation</td>
<td>.3 sec/fixation</td>
<td>.2 sec/word</td>
</tr>
</tbody>
</table>

Saccadic Training

Visually-Directed Counting

Wayne Saccadic Fixator

![Fig 6-6 Wayne Saccadic Fixator](image)
Saccadic Fixations

Fig 6-7 Column Saccades

Michigan Tracking

Fig 6-8 Michigan Tracking
Pursuit Testing

Bead Skills

Bead skills are the only time you assess eye movements in the standard 21 point exam, so do it well!

Levels of Eye Movements by SUNY

<table>
<thead>
<tr>
<th>Stage I</th>
<th>Stage II</th>
<th>Stage III</th>
<th>Stage IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Mv</td>
<td>Vm</td>
<td>V</td>
</tr>
<tr>
<td>motor stage</td>
<td>motor-visual</td>
<td>visual-motor</td>
<td>purely visual</td>
</tr>
<tr>
<td>3.5 yo</td>
<td>5.5 yo</td>
<td>7 yo</td>
<td></td>
</tr>
</tbody>
</table>

Ocular Dexterity

- Level IV: accurate and smooth all the time
- Level III: small midline jump; rotations are clipped off/squared
- Level II: no pursuits; look like saccades
- Level I: patient’s eye don’t follow bead

OD=OS=OU

- Level IV: equal ability in all meridians
- Level III: lead eye; monocular > binocular
- Level II: monocular much better than binocular but no clear dominant eye

Meridional Differences

- Sequence of increasing difficulty: horizontal to oblique to vertical
 - Level IV: vertical, horizontal, oblique all smooth and equal
 - Level III: vertical most difficult, midline jump
 - Level II: oblique and vertical difficult

Sustaining Ability

- Level IV: rotations smoothly without losing place
- Level III: 5 rotations smoothly without losing place
- Level II: 2 rotations smoothly without losing place

Motor Reinforcement

Behavior that reinforces the activity but at a lower developmental level, results in inefficiency. Examples: pointing, touching the bead.

Motor Overflow

Indicative of stress, no help. Examples: tapping foot, head movements.

- Level IV: no motor overflow; purely responsive
- Level III: motor overflow and motor reinforcement but easily squelched
- Level II: expect motor overflow and motor reinforcement
Adding Cognitive Demand
5 yo What's your name?
7 yo Count 1-10.
9 yo Count backwards from 10.
11 yo Count backwards from 100.
13 yo Count backwards from 100 by 2’s.
High school Count backwards from 100 by 3’s.

Note: Arnie Sherman adds motor activity to increase the demand. Kohl believes that adding the thinking element to the eye movement is more reflective of reading demands.

Groffman Visual Tracing Test
An error-corrected score
Normed for 7-12 yo
Purpose:
tests pursuit ability as well as figure ground.

Directions:
The patients starts at “A”, pursuits to a number. You record the time. Repeat until all letters have been completed. A correct answer gets scored. Points are awarded for time completed using the scoring scale. Total points are related to a rating given by an age norm. If a child does poorly, Kohl suggests throwing it away and repeating with another form of the test. This time tell the child that accuracy is important. You want to see if the child is capable of doing the test at all. If not, then you know the child really has a problem.

If you think the child has a binocular problem, then do the test monocularly, especially for intermittent strabs.

Pursuit Training
Two main training goals are:

1. rid the child of using motor support
2. provide the child with the ability to do ocular motilities without head movements
<table>
<thead>
<tr>
<th>Approach</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady position maintenance of stationary targets</td>
<td>Attention helps maintain. Try contrast, dx, size, touching targets</td>
</tr>
<tr>
<td>Voluntary to reflexive responses</td>
<td></td>
</tr>
<tr>
<td>Eye-hand coordination to no eye-hand support</td>
<td>Touch, intermittent touch, pointing, flashlight pointing</td>
</tr>
<tr>
<td>Small to large excursions</td>
<td></td>
</tr>
<tr>
<td>Slow to fast speed of pursuits</td>
<td></td>
</tr>
<tr>
<td>Jerky to smooth</td>
<td></td>
</tr>
<tr>
<td>Head movement to no head movement</td>
<td>Sand bag. Progress from eye movements laying down to sitting to standing to walking</td>
</tr>
<tr>
<td>Unequalness to equalness of OD or OS</td>
<td>Train monoc. first. Right side should be able to cross over to left side of body to train midline jumps.</td>
</tr>
<tr>
<td>Monocular to binocular</td>
<td></td>
</tr>
<tr>
<td>Sitting to standing</td>
<td></td>
</tr>
<tr>
<td>No vergence demand to prismatic demands</td>
<td>Marsden ball progression: hanging straight down, holding in hand and swinging, swinging by itself, swinging around the body, 2 balls at once.</td>
</tr>
<tr>
<td>Simple to complex cognitive demand</td>
<td>Use multiple targets, increase cognitive demand with questions and motor tasks. This ensures automaticity of eye movements.</td>
</tr>
<tr>
<td>Combinations of less stress to more stress</td>
<td></td>
</tr>
</tbody>
</table>

Examples of pursuit activities:
- Mazes
- Tracing
- Cutting with scissors
- Marsden Ball

† Note: Once some fixation ability is accomplished in the child, concentrate on increasing the ability to take in quantities of information with a tachistoscope, for example.
In-office Pursuit Training

Sports Disc Rotators
Purpose: pursuit training

- Note: have stereo targets that provide float out to no float to float in as they rotate.

Keystone Rotators
Purpose: pursuits with first degree fusion

- Note: do monocularly, slow speed, finger or hold penlight on it; use record player at home and track object rotating

Most training done at home

Paper and Pencil

Groffman

Eye-Hand control pursuits

Marsden Ball
Purpose: pursuits in multi directions
Advantage: fun and easy to vary task

Tachistoscope
REFERENCES

Kohl P. Opt 720 lecture. Fall 1997

OEP Vision catalogue of products and services, 1997. Santa Ana, CA.
Study Questions
Study Questions

Stages of Learning in Training

1. During the post performance part of a training session
 a) the patient should describe what they did
 b) the doctor should describe the task
 c) the patient performs the task
 d) the doctor watches the performance

2. If a training procedure is too hard for your compliant patient,
 a) scream at them
 b) bribe them with candy
 c) make them work harder
 d) change or modify the procedure

Stereoscopes

1. This is a

 a) Aperture rule
 b) SOMS
 c) Wheatstone
 d) Bernelloscope

2. Fusion of this targets would produce this degree of fusion:

 a) first
 b) second
 c) third
3. When moving the Wheatstone wings together, what demand is increasing?
 a) BO
 b) BI

4. Moving the bottom SOMS target further out increases what demand?
 a) BO
 b) BI

5. What happens to the accommodation stimulus as you move the SOMS target out?
 a) increases
 b) decreases
 c) remains the same

6. Using the single aperture on the aperture rule creates what demand?
 a) BO
 b) BI

7. How can the accommodation stimulus be changed on the aperture rule?
 a) changing the aperture position
 b) changing the card
 c) moving the targets back
 d) none of the above are correct

8. With the single aperture on the aperture rule, fusion of the eccentric circles creates float in the inner circle
 a) closer
 b) further
 c) same distance

9. When tromboning the stereocard toward the patient in a Biopter, what happens to the BO demand?
 a) increases
 b) decreases
 c) remains the same

10. What happens to the accommodation demand?
 a) increases
 b) decreases
 c) remains the same
11. The aperture rule with a single aperture, using plus flippers is appropriate to train

 a) convergence excess
 b) convergence insufficiency
 c) divergence insufficiency
 d) basic esophore

12. At optical infinity setting of a +5.00 stereoscope with 90mm OC separation, a stereogram, with a separation of 130mm. has a convergence demand of

 a) 10 pd BO
 b) 10pdBI
 c) 20pd BO
 d) 20pd BI

Sensory Fusion

1. When using the russel ring with this card, the patient report the inside of the loop is black. This response represents

 a) OD central suppression
 b) OS central suppression
 c) OD peripheral suppression
 d) OS peripheral suppression

2. The AN-2 card can be used to assess all except:

 a) suppression
 b) second degree fusion
 c) amount of phoria
 d) direction of fixation disparity

3. With a green lens on the right eye, a red lens on the left, the patient reports 2 dots on the Worth 4-Dot test. This represents

 a) OD suppression
 b) OS suppression
 c) monocular diplopia

4. A patient with red/green glasses (red on right), reports 2 green dots and below that 3 red dots. This patient has a

 a) left hypo
 b) left hyper
5. To neutralize the patient in the above problem, use right eye base
 a) up
 b) down
 c) in
 d) out

6. When turning the Synthetic Butterfly upside down, what happens to the float?
 floats in front
 floats behind the card
 will not float

7. For which one of these is straight on alignment critical?
 a) Stereo Fly
 b) Random Dot E
 c) Stereo Reindeer

8. In a Randot E, the patient is wearing habitual distance Rx. At 1 meter, the patient gets 500". What do you predict the stereopsis will be at 4 meters?
 a) 2000"
 b) 1000"
 c) 250"
 d) 125"

9. In the aviator series, how many levels of stereoacuity are measured on a given card?
 a) 1
 b) 2
 c) 3

10. Comparing the actual float perceived by a patient to the predicted mathematical float is a measurement of
 stereoacuity
 stereolocalization
 stereomobilization
 proximalization
Study Questions

11. Which one of the following is the worst for catching small angle strabismics?

 a) Stereo Fly
 b) Stereo Butterfly
 c) Random Dot E
 d) Synthetic Optics Butterfly

12. Binocular depth cues are most important at

 a) near distances with large moving targets
 b) near distances with fast moving targets
 c) near distances with stationary targets
 d) far distances with stationary targets

Motor Fusion

1. The Figure 8 vectogram is used to train

 a) first degree fusion
 b) BO ranges
 c) BI ranges
 d) stereopsis
 e) all the above

2. Quoits vectogram is used to train

 a) stereopsis
 b) vergence ranges
 c) stereolocalization
 d) all the above

3. What is the relationship between Bo Peep, Old King Cole and Humpty Dumpty in the Mother Goose vectogram?

 a) changes depending on the disparity
 b) stays the same
 c) reverses with BO
 d) reverses with base in

4. When sequentially fusing the lifesaver cards, which circles are seen as closer?

 a) top
 b) middle
 c) bottom
 d) all are at the same distance
5. With a Quoits vectogram at a 6 BO demand, parallax motion should be
 a) with
 b) against
 c) it should not move

6. With the same set up as above, increasing the demand would make the inner target appear
 a) smaller
 b) larger
 c) stay the same size

7. Using the horizontal mini tranaglyph in a vertical manner, do you expect float?
 a) yes
 b) no

8. The demand of the Spirangle becomes more ___ as you move towards the inner box
 a) BO
 b) BI
 c) cannot be determined

9. With the Chicago Skyline vectogram, increasing the BO demand of the airplane, makes the city become more
 a) BI
 b) BO
 c) does not change

10. If you put the Chicago Skyline at demand "H", as you move away the airplane vergence demand becomes
 a) smaller
 b) larger
 c) remains the same

11. Which lifesaver card is appropriate for BI training?
 a) clear card
 b) opaque card
 c) both will be equally successful
12. As you fuse (crossed) from bottom to top of the lifesaver card, BO demand
 a) increase
 b) decreases
 c) remains the same

13. The BI demand in the above example
 a) increase
 b) decreases
 c) remains the same

14. With the lifesaver, you are first crossed and move card towards you, BO demand____. Then you uncross and again move the card towards you. The BI demand____.
 a) increases-increases
 b) decreases-decreases
 c) increases-decreases
 d) decreases-increases
 e) both remain the same

15. In the BC 500 series, the opaque backgrounds are used for
 a) BI
 b) BO
 c) Trains both BI and BO equally well

16. The Brock rod trains
 a) BO
 b) BI
 c) Trains both BI and BO

17. Which order ranks the following techniques from easy to hard?
 1. Clown-increasing BO and BI ranges with smooth vergences
 2. Clown-cover, uncover, recover with a moving target
 3. Clown-jump vergences
 4. Clown-fuse with touch
 a) 1,2,3,4
 b) 4,1,2,3
 c) 4,1,3,2
 d) 1,4,3,2
18. Which is better for training DI?
 a) SOMS with a clear base
 b) aperture rule
 c) 3 dot card
 d) Brock string

19. Using the 3-dot card, the patient is asked to converge and overlap the dots. Which is not true?
 a) the patient has feedback whether they're over or under converging
 b) this is best for training BI
 c) this patient knows if they're suppressing
 d) this is good to improve NPC

20. Using the variable Random Dot E, the lowest finding is usually
 a) blur
 b) break
 c) recovery

21. Arrange in order of easy to hard.
 a) Quoits, Clown, Mother Goose, Chicago skyline
 b) Clown, Quoits, Mother Goose, Chicago Skyline
 c) Quoits, Clown, Chicago Skyline, Mother Goose
 d) Quoits, Mother Goose, Clown, Chicago Skyline

22. When crossing to see the lifesaver card, how many circles does the patient see?
 a) 1
 b) 2
 c) 3
 d) 4
Accommodation

1. The following +/-2.00 flipper findings are indicative of

 a) amblyopia
 b) accommodative insufficiency
 c) accommodative excess
 d) accom/verg problems

Eye Movements

1. What is this?
 a) Groffman
 b) DEM
 c) Ober
 d) King Devick

2. To perform well on the test above, you need
 a) good saccades
 b) good pursuits
 c) good figure-ground
 d) B and C only

3. Vertical and horizontal subtests are parts of which test?
 a) Groffman
 b) DEM
 c) King Devick
 d) Pierce

4. What is the vertical subtest mentioned above assess?
 a) vertical eye movements
 b) horizontal eye movements
 c) automaticity of letter naming
 d) assess pursuit ability
5. This shows a

a) regression
b) saccade
c) fixation
d) return sweep saccade

6. Eye movements should start to supersede head movements in pursuits by age

a) 5
b) 7
c) 9
d) 11

7. Using a finger under words to guide the eyes is an example of

a) motor overflow
b) motor reinforcement
c) motor hysteresis
d) motor generalization

8. Using scissors to cut out along a line is used to train

a) saccades
b) pursuits
c) accommodative facility
d) duration of fixation

9. Tachistoscope presentations train

a) excessive regression
b) too many saccades
c) too long fixations
d) return sweep accuracy
10. Concerning the Ober 2, which finding showed the least percent difference in comparing 1st graders to college-aged students?

 a) fixations/100 words
 b) regression/100 words
 c) duration of fixation
 d) span of recognition

11. A "hiccup" in the eyes during a pursuit movement crossing the midline is an aberrant finding in

 a) 3 yo
 b) 5 yo
 c) 6 yo
 d) 8 yo
 e) all but "a" are correct

12. Order the following techniques for training with Groffman visual tracings easy to hard:

 1. pointing
 2. touching
 3. ocular with target movement
 4. ocular with stationary target

 a) 1,2,3,4
 b) 2,1,3,4
 c) 2,1,4,3
 d) 1,2,4,3
Further Readings
Further Readings

Sensory Fusion

Motor Fusion

Further Readings

Accommodation

Eye Movements

