Disrupting Sedentary Time in Adults with DMT2 Can Result in Decreased BMI and Increased Weight Loss

Megan Margeson

Recommended Citation
Margeson, Megan, "Disrupting Sedentary Time in Adults with DMT2 Can Result in Decreased BMI and Increased Weight Loss" (2017). School of Physician Assistant Studies. 636.
https://commons.pacificu.edu/pa/636
Disrupting Sedentary Time in Adults with DMT2 Can Result in Decreased BMI and Increased Weight Loss

Abstract

Background: Diabetes mellitus type 2 affects millions of people across the world. The problem is only increasing. In addition to medications, most interventions have focused on diet and exercise, and these regimens prove difficult to many patients. Recent data has shown that sedentary behavior can have negative effects on overall health in healthy and diabetic patients alike. This systematic review focuses on the benefit to waist circumference (WC) and body mass index (BMI) by breaking up long bouts of sedentary time.

Methods: An exhaustive medical literature search was conducted using MEDLINE-Ovid, CINAHL, and Web of Science using the keywords: diabetes mellitus type 2, sedentary lifestyle, and motor activity.

Results: The two studies that met inclusion criteria show that prolonged sedentary behaviors in adults with DMT2 had significant associations with increased WC and BMI. Both studies used isotemoral substitution analysis to correlate a decrease in BMI and WC when prolonged sitting time was replaced with shorter bouts of sitting time.

Conclusion: While moderate to vigorous activity remains one of the best interventions for adults with DMT2 in controlling WC and BMI, this patient population can benefit with a simple intervention of reducing prolonged sedentary activity to no more than 30 minutes at a time.

Keywords: Diabetes mellitus type 2, physical activity, and sedentary lifestyle.
Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the “Rights” section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.). Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see “Rights” on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209. Email inquiries may be directed to: copyright@pacificu.edu
Disrupting Sedentary Time in Adults with DMT2 Can Result in Decreased BMI and Increased Weight Loss

Megan Margeson

Pacific University
Oregon

A Clinical Graduate Project Submitted to the Faculty of the School of Physician Assistant Studies
Pacific University
Hillsboro, OR

For the Masters of Science Degree, August 2017
Faculty Advisor: Dr. Mark Pedamonte
Clinical Graduate Project Coordinator: Annjanette Sommers, PA-C, MS
Biography

[redacted for privacy]
Abstract

Background: Diabetes mellitus type 2 affects millions of people across the world. The problem is only increasing. In addition to medications, most interventions have focused on diet and exercise, and these regimens prove difficult to many patients. Recent data has shown that sedentary behavior can have negative effects on overall health in healthy and diabetic patients alike. This systematic review focuses on the benefit to waist circumference (WC) and body mass index (BMI) by breaking up long bouts of sedentary time.

Methods: An exhaustive medical literature search was conducted using MEDLINE-Ovid, CINAHL, and Web of Science using the keywords: diabetes mellitus type 2, sedentary lifestyle, and motor activity.

Results: The two studies that met inclusion criteria show that prolonged sedentary behaviors in adults with DMT2 had significant associations with increased WC and BMI. Both studies used isotemoral substitution analysis to correlate a decrease in BMI and WC when prolonged sitting time was replaced with shorter bouts of sitting time.

Conclusion: While moderate to vigorous activity remains one of the best interventions for adults with DMT2 in controlling WC and BMI, this patient population can benefit with a simple intervention of reducing prolonged sedentary activity to no more than 30 minutes at a time.

Keywords: Diabetes mellitus type 2, physical activity, and sedentary lifestyle.
Acknowledgements

To my family: Thank you for always believing in me.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biography</td>
<td>2</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5</td>
</tr>
<tr>
<td>Keywords:</td>
<td>6</td>
</tr>
<tr>
<td>List of Tables</td>
<td>6</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>6</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>7</td>
</tr>
<tr>
<td>METHODS</td>
<td>8</td>
</tr>
<tr>
<td>RESULTS</td>
<td>9</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>12</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>13</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Quality Assessment of Reviewed Studies
Table 2: Time Spent in Activity with Outcomes
Table 3: Isotemporal Substitution

List of Abbreviations

DMT2 Diabetes Mellitus Type 2
WC Waist Circumference
BMI Body Mass Index
LPA Light Physical Activity
MVPA Moderate to Vigorous Physical Activity

Disrupting Sedentary Time in Adults with DMT2 Can Result in Decreased BMI and Increased Weight Loss

BACKGROUND

“Sitting is the new smoking.” This is a topic that has been covered by TED Talks, Huffington Post, Forbes, MayoClinic, and has even been referenced by mainstream movies like “The Intern.” Recent studies\(^1\) have shown that sitting for long periods of time increases waist circumference, BMI, risk of metabolic syndrome, and risk for cardiovascular disease, stroke and diabetes. This is especially surprising as the amount of exercise one does is not protective; in other words, if you sit for 8 hours per day and exercise for 1 hour you are at the same risk as those who do not exercise at all.\(^2\)\(^-\)\(^5\)

Diabetes mellitus type 2 (DMT2) is a disease that is currently affecting over 29 million people or 9.3% of the Unites States population. It is the sixth leading cause of death in the US. Diabetes can cause a myriad of complications including hypertension, myocardial infarction, stroke, kidney disease, skin ulcers, neuropathies, amputations, and early death.\(^6\) Currently, management of DMT2 ranges from daily medication, to changes in diet, to increases in activity and exercise;\(^7\) however, the problem persists and continues to deteriorate. While increasing exercise has proven effective for glycemic control,\(^8\) moderate to vigorous physical activity remains a difficult challenge for most patients. Recent studies\(^1\)\(^-\)\(^3\) have focused on the negative impacts of prolonged sedentary time in adults, regardless of physical activity. Results of a meta-analysis\(^1\) noted that all-cause mortality, cardiovascular disease, cancer incidence and mortality, and DMT2 were increased when related to prolonged sedentary time, even when adjusted for physical activity.
Previous studies9-11 have also highlighted the increased incidence of sedentary
time in the majority of patients with DMT2. When adults with DMT2 have higher seden-
tary time they also have a poor metabolic profile.2-4 A possible intervention to this prob-
lem is to break up prolonged sedentary time with short breaks. This systematic review
asks: Can disrupting sedentary time in adults with DMT2 result in decreased BMI and in-
creased weight loss?

METHODS

An exhaustive medical literature search was conducted using MEDLINE-Ovid, CI-
NAHL, and Web of Science using the keywords: diabetes mellitus type 2, sedentary life-
style, and motor activity. The search was narrowed by including only English language
articles, studies performed on humans, and publication dates within the last 5 years. The
bibliographies of the articles were also searched for relevant sources. Articles that fo-
cused on shorter bouts of sitting and an outcome of improved BMI and weight loss were
included. Relevant articles were assessed for quality using the Grading of Recommenda-
tions, Assessment, Development and Evaluation (GRADE).12

RESULTS

The initial search of the above mentioned databases yielded 122 articles for re-
view. After applying the eligibility criteria, removing duplicates, and scanning abstracts
for eligibility, 7 articles were read in their entirety. Two were considered eligible for this
systematic review and are reviewed below.13,14 Table 1 shows a quality assessment of the articles chosen.

Study 1: Accelerometer derived sedentary and physical activity time (LWWD)

Socio-demographic and cardio-metabolic characteristics of the participants can be found in the article13 or from the Living Well With Diabetes (LWWD) sample, which have been reported previously. The 285 participants were Australian born with DMT2, aged 25-70 and with a BMI over 25kg/m2. The median HbA1c was 7.1%; most used traditional oral medication (77\%) and 14\% used insulin. Seventy-one percent of the participant’s BMI fell into the obese category (BMI > 30kg/m2) and 32 participants (11.5\%) had a BMI greater than 40. Sedentary waking hours was 62.7\% (SD 10.8). The remaining waking hours were spent with 35\% (SD 10.0) in light-intensity activity (LPA), and 2.2\%(SD 2.1) in moderate-to-vigorous physical activity (MVPA). Over 25\% of sedentary time was accumulated in bouts of greater than 30 minutes.13

Prolonged sedentary behavior had significant associations with higher waist circumference (+0.67 cm) and BMI (+0.33 kg/m2) per 30min/day. Light-intensity activity showed statistically significant associations with lower WC, BMI, and fasting plasma glucose (-0.61 cm, -0.29 kg.m2 and -2\% lower per 30min/day, respectively). This data is presented in Table 2. No associations were found between non-prolonged sedentary time and MVPA. None of these associations remained statistically significant when adjusted for other activities.13
The next association looked at was isotemporal substitution. When looked at cross-sectionally, decreasing prolonged sedentary time and replacing it with light-intensity activity time (+30min/day) was associated with significantly lower WC (-0.77cm).13

\textbf{Study 2: The potential impact of displacing sedentary time. (Early ACTID)}

The Early ACTID study14 was comprised of 593 participants, 519 of these fulfilled criteria to be included in this accelerometer study. Demographics can be found in the article. Sedentary time for these participants was 65\% of the day and 46\% of this was in bouts longer than 30 minutes. Participants spent an average of 25.4 +/- 18.9 min of the day in MVPA and 272.5 +/- 75.4 in LPA.14

Regression analysis results for long-bout sedentary time, short-bout sedentary time, LPA, and MVPA are shown in Table 2. Higher BMI (adjusted beta, 0.41; 95\% CI 0.26, 0.56) and larger WC (adjusted beta 1.03; 95\% CI 0.69, 1.37) and also a lower HDL-cholesterol (adjusted beta, -0.02, CI -0.03, -0.01). There were no other biomarker associations found in this study. A decrease in BMI was shown for short-bout sedentary time (-0.71 [-1.11, -0.33]), LPA (-0.41 CI [-0.61, -0.22]), and MVPA (-2.15 CI [-2.87, -1.44]). Associations were also seen for a decrease in waist circumference for short-bout sedentary time (-1.63 CI [-2.51, -0.76]), LPA (-1.15 CI [-1.60, -0.70]), and MVPA (-4.49 CI [-6.16, -2.82]). All data listed had a statistical significance of P<0.05 level.14

An isotemporal substitution analysis was performed and results are shown in Table 3. Using cross-sectional analysis, reallocating 30 minutes per day in long bouts of sedentary time with 30 minutes of short-bout sedentary time, LPA, or MVPA was associated with a lower BMI and WC. These associations were stronger than the single-activity
models. Replacing 30 minutes of long-bout sedentary time with 30 minutes of short-bout sedentary time was associated with both a decrease in BMI (adjusted beta, -0.60; 95% CI -1.00, -0.21) and decreased WC (adjusted beta, -1.16; 95% CI -2.08, -0.25). Reallocating 30 minutes of short-bout sedentary time and LPA with 30 minutes of MVPA has an even stronger association with reduced BMI (-1.87 CI [-2.59, -1.14]; -2.00 CI [-2.74, -1.26] respectively), and waist circumference (-3.97, CI [-5.65, -2.28]; -3.93, CI [-5.65, -2.21] respectively).14

DISCUSSION

The studies13,14 showed similar strengths and limitations. Both were able to objectively measure activity over multiple intensities with the use of accelerometers. Both measured a clinically important population. Study 1 and 2 had a large population size that proved to have statistically significant outcomes with Study 2 having the best number at 519. Both studies13,14 showed that overweight and obese adults with DMT2 spend a large amount of time sedentary. When compared to healthy adults, more time is spent sedentary even when the time spent in MVPA is equal.15 It is common that this sedentary time is spent in prolonged bouts.13,14 While moderate to vigorous physical activity remains one of the best interventions for weight loss in a diabetic patient,16 reducing sedentary time may be a useful intervention in patient populations that are noncompliant or unable to perform more vigorous activity. This could also be a useful intervention for pre-diabetic patients. Patients could be educated to stretch or walk in place for 1-2 minutes every
30 minutes. For example, walk in place during commercial breaks when watching TV. These studies13,14 support such advice.

Weaknesses between both studies13,14 were also similar. Accelerometers, can be prone to error. They cannot measure changes in posture, for example, moving from sitting to prolonged standing. Accelerometers cannot be worn in water so activity during showering or swimming cannot be measured. In addition, many participants did not wear the device for all 7 days; however, they were worn for the required 4 day minimum to be included in the study. Lastly, the studies13,14 didn’t fully address the length of time for LPA or MVPA, but did imply the need to move around every 30 minutes.

CONCLUSION

A comparison of the results of two studies found that both WC and BMI can be improved by replacing long bouts of sedentary time with light physical activity. Simple LPA and breaking up prolonged sedentary time with short breaks shows improvements in overweight adults with DMT2. Future studies that could measure the difference between sitting vs standing and measure data a priori over a longer period of time might be beneficial in directing treatment for overweight patients with DMT2. In the meantime, advising
adult patients with DMT2 to break up their sedentary bouts in segments of less than 30 minutes could be a beneficial addition to management.
TABLE 1: Quality Assessment of Reviewed Articles

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of studies</th>
<th>Study Designs</th>
<th>Downgrade Criteria</th>
<th>Upgrade Criteria</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>2</td>
<td>Cohort</td>
<td>Not Serious</td>
<td>Not Serious</td>
<td>Unlikely</td>
</tr>
<tr>
<td>Waist Circumference</td>
<td>2</td>
<td>Cohort</td>
<td>Not Serious</td>
<td>Not Serious</td>
<td>Unlikely</td>
</tr>
</tbody>
</table>

*Travel expenses were covered by OERC and Ergotron when GNH (author) presented this study.

TABLES

References

TABLE 2. Time Spent in Activity with Outcome

<table>
<thead>
<tr>
<th>BMI</th>
<th>Replacing Sed bout with:</th>
<th>Replacing Short bout sed with:</th>
<th>Replacing LPA with:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short bout/Non-extended sed</td>
<td>LPA</td>
<td>MVPA</td>
</tr>
<tr>
<td>Study 1. GN Healy: Accelerometer-derived sedentary...</td>
<td>-0.60 (-1.46, 0.08)</td>
<td>-0.77 (-1.33, 0.22)</td>
<td>0.64 (-1.96, 3.24)</td>
</tr>
<tr>
<td>Study 2. CL Falconer: The Potential Impact...</td>
<td>-0.50 (-1.00, -0.21)</td>
<td>-0.26 (-0.47, -0.05)</td>
<td>-2.19 (-2.89, -1.49)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WC</th>
<th>Replacing Sed bout with:</th>
<th>Replacing Short bout sed with:</th>
<th>Replacing LPA with:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short bout/Non-extended sed</td>
<td>LPA</td>
<td>MVPA</td>
</tr>
<tr>
<td>Study 1. GN Healy: Accelerometer-derived sedentary...</td>
<td>-0.35 (-0.70, -0.01)</td>
<td>-0.36 (-0.61, -0.11)**</td>
<td>0.20 (-0.93, -0.11)**</td>
</tr>
<tr>
<td>Study 2. CL Falconer: The Potential Impact...</td>
<td>-1.16 (-2.08, -0.25)</td>
<td>-0.87 (-1.35, -0.39)</td>
<td>-4.58 (-6.19, -2.93)</td>
</tr>
</tbody>
</table>

Bold indicates statistical significance at the P < 0.05 level; **P < 0.01

Accelerometer-derived sedentary...	-0.29 (-0.52, -0.05)	-0.61 (-1.14, -0.09)	0.98 (0.97, 1.00)			
Study 2. CL Falconer: The Potential Impact...	-0.41 (-0.61, -0.22)	-1.15 (-1.60, -0.70)	-2.15 (-2.87, -1.44)			
	BMI	WC	HDL	BMI	WC	HDL
Light Intensity						MVPA

- 14 -

5. Stamakis E, Davis M, Stathi A, Hamer M. Associations between multiple indicators of objectively measured and self-reported sedentary behavior and cardiometabolic risk in older adults. Pre Med. 2012; 54; 82-87

