Parity and Heart Failure in Postmenopausal Women

Erin Dingman

Follow this and additional works at: https://commons.pacificu.edu/pa

Recommended Citation
https://commons.pacificu.edu/pa/639
Parity and Heart Failure in Postmenopausal Women

Abstract

Background: Previous research has identified physiologic changes post-menopause with cardiovascular disease, but little research has been conducted investigating a link with heart failure or the influence of parity for risk stratification.

Methods: An exhaustive search of available medical literature was performed. MEDLINE OVID, CINAHL, and Web of Science databases were searched using the keywords nulliparity, postmenopause, and heart failure. The articles were evaluated using GRADE.

Results: The search resulted in 2 studies evaluating the incidence of heart failure in a postmenopausal population and accounting for gravidity.

Conclusion: There is an association between nulliparity, grand multiparity, and increase in risk of heart failure in the postmenopausal population. The strongest association can be seen in development of heart failure with preserved ejection fraction.
If you have downloaded this document directly from the web or from CommonKnowledge, see the “Rights” section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.). Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see “Rights” on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209. Email inquiries may be directed to: copyright@pacificu.edu

This capstone project is available at CommonKnowledge: https://commons.pacificu.edu/pa/639
Parity and Heart Failure in Postmenopausal Women

Erin A. Dingman

A Clinical Graduate Project Submitted to the Faculty of the
School of Physician Assistant Studies
Pacific University
Hillsboro, OR
For the Masters of Science Degree, August 11, 2018

Faculty Advisor: Craig T. Turner, MD
Clinical Graduate Project Coordinator: Annjanette Sommers, PA-C, MS
Abstract

Background: Previous research has identified physiologic changes post-menopause with cardiovascular disease, but little research has been conducted investigating a link with heart failure or the influence of parity for risk stratification.

Methods: An exhaustive search of available medical literature was performed. MEDLINE OVID, CINAHL, and Web of Science databases were searched using the keywords nulliparity, postmenopause, and heart failure. The articles were evaluated using GRADE.

Results: The search resulted in 2 studies evaluating the incidence of heart failure in a postmenopausal population and accounting for gravidity.

Conclusion: There is an association between nulliparity, grand multiparity, and increase in risk of heart failure in the postmenopausal population. The strongest association can be seen in development of heart failure with preserved ejection fraction.

Keywords: Nulliparity, postmenopause, and heart failure
Table of Contents

Abstract ... 2
List of Tables .. 4
List of Figures .. 4
List of Abbreviations ... 4
BACKGROUND .. 5
METHODS ... 6
RESULTS ... 6
DISCUSSION ... 8
CONCLUSION ... 9
References .. 10
Table I: Quality Assessment of Reviewed Articles 11
Table II. Heart Failure Incidence in Female populations based on parity 11
Table III. Nulliparity and Differentiated Heart Failure Incidence 12
Figure I. PRISMA Flow Diagram ... 13
List of Tables

Table I: Quality Assessment of Reviewed Articles
Table II: Heart Failure Incidence in Female populations based on parity
Table III: Nulliparity and Differentiated Heart Failure Incidence

List of Figures

Figure I: PRISMA Flow Diagram

List of Abbreviations

HF………………………………………………………………………………….Heart Failure
HFrEF………………………………………….. Heart Failure with reduced Ejection Fraction
HFpEF…………………………………………. Heart Failure with preserved Ejection Fraction
ICD…………………………………………..International Classification of Disease
HR…………………………………………..Hazard Ratio
WHI…………………………………………..Women’s Health Initiative
Parity and Heart Failure in Postmenopausal Women

BACKGROUND

Nulliparity is defined as never having been pregnant or never completing a pregnancy beyond 20 weeks gestation. High (or grand) parity is classified as greater than or equal to 5 births. Heart failure (HF) may be classified as either diastolic HF (also termed heart failure with preserved ejection fraction (HFpEF)) or systolic HF (also termed heart failure with reduced ejection fraction (HFrEF)).

With the increase in incidence of HF in the US population, determining risk factors in female patient populations can enable better management of care. The Framingham Heart Study\(^1\) reported a lifetime risk of heart failure development in women at 1 in 6, with poorly managed hypertension identified as the major risk factor in development of future disease. Furthermore, the incidence of heart failure diagnosis increased with advancing age.\(^1\) Coronary heart disease, tobacco abuse, hypertension, obesity, diabetes mellitus, valvular disease and ethnicity are the typical qualities noted in a patient history that may influence one’s risk for heart failure diagnosis.\(^2\)

Heart failure is also known to occur in women in the peripartum setting, most commonly brought on by peripartum cardiomyopathy or hemodynamic changes, leading to exacerbation of symptoms in those with a previous diagnosis of heart failure.\(^3\) This raises the question, how does parity influence the risk for development of HF in a postmenopausal population?
METHODS

An exhaustive search of available medical literature was performed. MEDLINE-OVID was searched, utilizing the terms “parity or nulliparity”, “heart failure or cardiovascular diseases”, “adult” and “aged”. CINAHL and Web of Science databases were searched using the terms “parity or nulliparity”, “heart failure or cardiovascular diseases”, and “aged”. Eligible articles included cohort studies published within the last 10 years with postmenopausal women as the population of interest. Studies referenced incidence of heart failure, postmenopause, in relation to the number of pregnancies of participants to infer risk assessment. The articles were ased for quality using Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). See Figure I.

RESULTS

The MEDLINE-OVID search yielded 139 results when limited to articles published in the English language. Two articles were identified evaluating the incidence of heart failure in a postmenopausal population and accounting for gravidity. CINAHL yielded 13 results with one identified article which was a duplicate. The Web of Science search yielded 56 results with 2 articles of interest, again duplicates. See Table I.

In 2009, publication of research directly addressing a relationship between parity and incident HF in a population of Swedish postmenopausal women was published. Results from this analysis demonstrated risk association with development heart failure in older women (≥50 years) in a J-shaped pattern. In a study population of 1 332 062 women, 6069 heart failure events were identified during the study period by International
Classification of Diseases, Ninth Revision (ICD-9) or International Classification of Diseases, Tenth Revision (ICD-10) diagnosis obtained from a first hospitalization or death of an identified participant as recorded in the Hospital Discharge Register and Cause of Death Register. Women with 2 births were used as the reference. Women who were nulliparitus, had one birth, or more than 4 births were more likely to have a reported ICD-9 or ICD-10 diagnosis for heart failure than women with 2 or 3 births. Hazard ratios (HR) for incident heart failure based on parity (0, 1, 2, 3, 4, and ≥5 births), in an age adjusted model were reported as 1.71, 1.36, 1.0, 1.13, 1.39, and 2.21 (p<0.0001) respectively. Hazard ratios (HR) for incident heart failure based on parity (0,1,2,3,4, and ≥5 births), in an age, birth year, and socioeconomic adjusted model were reported as 1.78, 1.35, 1.0, 1.10, 1.31, and 1.91 (p<0.0001) respectively. See Table II.

In 2017, a second study focused on HF and parity was published. Using data from the Women’s Health Initiative (WHI), investigators examined data to identify a relationship between parity, reproductive duration, and age at first pregnancy with HF in a postmenopausal population. The WHI population of 28 516 postmenopausal women identified 1494 incidents of heart failure either by confirmed HF hospitalization or patients self-reporting, and subsequent adjudication by a physician review of records. Results demonstrated nulliparity was associated with a statistically significant increased risk of HFpEF in both age-adjusted (HR: 2.57; 95% CI:1.22 to 5.44) and multi-variable adjusted models (HR 2.75; 95% CI: 1.16 to 6.52). See Table III. When assessing for 0, 1, 2, 3, 4, and ≥5 births the respective age adjusted HRs were 1.80, reference, 1.05, 1.03, 1.12, and 1.13 and multivariable –adjusted HRs of 1.70, reference, 1.13, 1.17, 1.19, and 1.15. See Table II.
DISCUSSION

Analysis of both cohorts have shown low and high parity are associated with more pronounced risks for heart failure5,6 with the least risk identified at 1-2 births. Stronger evidence of this phenomena is demonstrated in the Swedish cohort than in the WHI cohort, see Table II. High parity holds the greatest risk of heart failure events5,6. Interestingly, when data was analyzed to identify risk in women whose children were all parented by the same partner, the extent of risk was slightly reduced as compared to women with children by multiple partners. Both populations retained the J-shaped risk distribution.6

The studies5,6 included in this review have demonstrated a moderately strong increase in risk of HFpEF diagnosis, hospitalization, or cause of death in women without history of pregnancy. Evaluation of the Swedish cohort6 was able to demonstrate a statistically significant relationship between total incident HF/total number of events (P <0.0001; HR 1.71, CI: 1.59-1.84), whereas the WHI cohort did not have a statistically significant correlation (HR 1.70, CI: 0.95-3.03).

Despite the results, both studies5,6 had limitations. In the WHI cohort,5 results comparing nulliparitus women and Total Incident HF, Incident HFrEF and Incident HFpEF all demonstrated small sample sizes for nulliparitus women, ranging from 182-188 women out of study populations in excess of 28 000. The small sample size may limit the significance of the statistical findings of this study population. While the WHI population represented a more ethnically diverse sample population, the Swedish cohort did not provide a racial breakdown of participants, and recognized the rather homogenous
nature of the Swedish population. Future research with a focus population of women of varying ethnic backgrounds may yield data with greater validity for a risk relationship. Neither study identified contraceptive methods used by nulliparitus women. Future research could include hormonal contraceptive usage data to identify if treatment with estrogen, progesterone, or a combination therapy influences future diagnosis of HF.

CONCLUSION

Both nulliparity and high parity have been shown to increase the risk of development of heart failure in a postmenopausal population. Hazard ratio estimates ranging from $1.70 - 1.78$ demonstrate nulliparitus women have slightly less than a two-fold increase in risk of developing heart failure at older ages than women with 1-4 live births. Women whom have had given birth 5 or more times have a 2-fold increase in risk of heart failure events, as compared to women with 1 or 2 births. Hormonal or hemodynamic changes which take place during pregnancies may lead to cardioprotective characteristics in women who have bore children, but this protective effect seems to be offset in the setting of high parity. This research may assist health care providers in recognizing other qualities in a patient’s social history that play a role in risk management.
References

Table I: Quality Assessment of Reviewed Articles

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Limitations</th>
<th>Indirectness</th>
<th>Inconsistency</th>
<th>Imprecision</th>
<th>Publication bias</th>
<th>Upgrade Criteria</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall, et al</td>
<td>Observational</td>
<td>Not Serious</td>
<td>Not Serious</td>
<td>Not Serious</td>
<td>Unlikely</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Parikh, et al</td>
<td>Observational</td>
<td>Not Serious</td>
<td>Not Serious</td>
<td>Not Serious</td>
<td>Unlikely</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

Table II: Heart Failure Incidence in Female populations based on parity

<table>
<thead>
<tr>
<th>Study</th>
<th>Parity</th>
<th>Recorded HF Events</th>
<th>Recorded HF Events per 1000 Person-Years</th>
<th>Age Adjusted Model HR (95% CI)</th>
<th>P value Across Group</th>
<th>Multivariable Adjusted Model HR (95% CI)</th>
<th>P value Across Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parikh et al</td>
<td>0</td>
<td>1064</td>
<td>0.59</td>
<td>1.71 (1.59-1.84)</td>
<td><0.0001</td>
<td>1.78 (1.65-1.93)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1094</td>
<td>0.48</td>
<td>1.36 (1.26-1.46)</td>
<td></td>
<td>1.35 (1.25-1.45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1950</td>
<td>0.34</td>
<td>1.13 (1.05-1.21)</td>
<td></td>
<td>1.10 (1.03-1.19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1166</td>
<td>0.40</td>
<td>1.39 (1.26-1.54)</td>
<td></td>
<td>1.31 (1.18-1.45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>464</td>
<td>0.53</td>
<td>2.21 (1.97-2.49)</td>
<td></td>
<td>1.91 (1.70-2.15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>331</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall et al</td>
<td>0</td>
<td>16</td>
<td>0.75</td>
<td>1.80 (1.07-3.03)</td>
<td>0.21</td>
<td>1.70 (0.95-3.03)</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>138</td>
<td>0.34</td>
<td>Reference (N/A)</td>
<td></td>
<td>Reference (N/A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>332</td>
<td>0.36</td>
<td>1.05 (0.86-1.28)</td>
<td></td>
<td>1.13 (0.91-1.41)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>358</td>
<td>0.39</td>
<td>1.03 (0.84-1.25)</td>
<td></td>
<td>1.17 (0.94-1.45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>287</td>
<td>0.44</td>
<td>1.12 (0.91-1.38)</td>
<td></td>
<td>1.19 (0.95-1.50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>363</td>
<td>0.50</td>
<td>1.13 (0.92-1.38)</td>
<td></td>
<td>1.15 (0.92-1.45)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: HF, heart failure; HR, hazard ratio
Swedish cohort N = 1 332 062; WHI cohort N = 28 515
Table III. Nulliparity and Differentiated Heart Failure Incidence

<table>
<thead>
<tr>
<th>Study</th>
<th>HF Classification</th>
<th>Reproductive Factor</th>
<th>Number of Women</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall et al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Incident HF</td>
<td>Nulliparitus</td>
<td>188</td>
<td></td>
<td>1.70 (0.95-3.03)</td>
</tr>
<tr>
<td>HFrEF</td>
<td>Nulliparitus</td>
<td>182</td>
<td></td>
<td>1.27 (0.39-4.17)</td>
</tr>
<tr>
<td>HFpEF</td>
<td>Nulliparitus</td>
<td>186</td>
<td></td>
<td>2.75 (1.16-6.52)</td>
</tr>
</tbody>
</table>

Abbreviations: HF, heart failure; HFrEF, heart failure with reduced ejection fraction (systolic HF); HFpEF, heart failure with preserved ejection fraction (diastolic HF); CI, confidence interval

WHI cohort N = 28 515

HR adjusted for age at screening, household income, education level, ethnicity, U.S. region, body mass index, hypertension, diabetes, hyperlipidemia, smoking status, breastfeeding, history of pregnancy loss, prior hysterectomy, and usage of oral contraception or menopausal hormone therapy
Figure I. PRISMA Flow Diagram

Records identified through database searching (n = 208)

Additional records identified through other sources (n = 0)

Records after duplicates removed (n = 205)

Records screened (n = 205) → Records excluded (n = 200)

Full-text articles assessed for eligibility (n = 5)

Full-text articles excluded, with reasons (n = 3)

Studies included in qualitative synthesis (n = 2)