What Do You Learn? It Depends on Your Digital Point of View Part Two: The Human Eye View

Mark Szymanski
Pacific University

Follow this and additional works at: http://commons.pacificu.edu/inter06

Recommended Citation

This Article is brought to you for free and open access by the Interface: The Journal of Education, Community and Values at CommonKnowledge. It has been accepted for inclusion in Volume 6 (2006) by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.
What Do You Learn? It Depends on Your Digital Point of View Part Two: The Human Eye View

Rights
Terms of use for work posted in CommonKnowledge.

This article is available at CommonKnowledge: http://commons.pacificu.edu/inter06/3
By Mark Szymanski <szym0933@pacificu.edu>

In this series I am examining three different digital points of view: The micro point of view, the human eye point of view, and the macro point of view and their impact on teaching and learning. (For part one in this series, please see http://bcis.pacificu.edu/journal/2005/07/szymanski.php). These points of view are differentiated by two elements: physical position and magnification. Each of these views provides educators with a new way to think about how to design learning environments. This article examines the human point of view.

A Human Eye Point of View: Before the advent of digital tools, a picture, a painting, or a sketch that appeared in print was often the only visual support for students. These images were most often created using film cameras. The disadvantage was as textbooks aged, so did the images. They were static and created by the publishers, not the students. With images and a strong narrative, the student constructed their own knowledge. Now, with the advent of digital photography and video, students and teachers are able to create and share their own work, and book publishers are able to create dynamic digital support materials on the web.

The human eye point of view in learning environments has become the most popular perspective to capture and view images digitally. Film cameras paved the way. People captured images through the lens, but, ultimately the selection process was dictated by the human eye and that person’s point of view.

The Human Eye Point of View: Digital Tools and Software

This category of digital tools available to teachers and students has changed rapidly during the past 10 years. These tools include still and video cameras, and the editing software available to
teachers and students. For example, the Quicktake 100 [1] camera put out by Apple in 1994 took 24-bit pictures at a maximum resolution of 640×480 with an 8mm lens. The introductory price in 1994 was $749. Adjusted for inflation that camera would sell at $963. This camera was out of reach the price point or user-friendly category for most educators at the time. Today, for $963 you can purchase an SLR camera or a classroom set of six 4.0 mega pixel digital cameras.

In addition to the hardware changes, software development has allowed teachers and students to more easily incorporate digital images into their work. Apple has been a leader in this area with their creation of the iLife suite of software. The Apple student work gallery [2] is one place to find a wide range of examples that focus on students using cameras to create projects that express their deep understanding of topics, concepts, principles, and communities.

New Learning Environments and Communities

As new technology tools continue to evolve at a rapid pace, educators often struggle with trying to find a way or framework that allows them to use the changing tools in their classroom. In the new book, *Teaching With Digital Images* [3]. Glen Bull and Lynn Bell propose an effective framework for bringing in the human eye point of view via digital images in the classroom. They propose a four-phase process for using digital images in curriculum. The process can serve as a starting point for educators as they begin to develop ways to use digital images into their curriculum. The framework is a useful starting point because it allows teachers to create lessons that are student directed as well as adaptable to the changing characteristics of image capturing tools. The four phases are: acquire, analyze, create, and communicate.

1. Acquire: In this phase of the framework, students acquire and select images to analyze. For example, in an elementary classroom students might use digital cameras to photograph the weekly growth of seeds they planted. In a high school class students might photograph examples of buildings that have a certain set of architectural features.

2. Analyze: In this phase of the framework, students analyze the selected images based on the objectives of an assignment. For example, in the elementary classroom students might analyze their time-lapse seed and plant photographs to identify the essential physical elements of development. They could then correlate the plant growth with the amount of water or soil quality. In the high school class, the students might analyze the architectural photographs to identify specific examples of architectural characteristics and their effect on the physical health of the building.

3. Create: In this phase of the framework students create products that tie together their understandings into a coherent structure. Examples might be web sites or multimedia presentations. In the elementary classroom, students might take their analysis of the plant growth and create a slide show that includes photographs and text that tell the story of plant development. In the high school, students might create a web site that highlights the local architectural history that includes the images they captured and analyzed.
4. Communicate: In this phase of the framework students share their work. The communication phase might be the simplest phase of the process, but it also might have the most powerful impact on student learning. If students know that they will have to share their work with a larger audience, they might be more inclined to improve the quality of their creations.

Conclusion

As educators continue to be pushed by their students’ technology skills and changing view of what is possible to archive with a camera, it’s even more important to develop frameworks for understanding. To be useful, these frameworks need to allow educators to impose a process and some structure on the quickly changing formats and raw materials students will be bringing to their learning experiences. At this time, the most popular point of view students bring to the process is their own human eye point of view-driven by the ever increasing availability of inexpensive and reliable digital still and video cameras. What they learn depends on the point of view.

References:

This entry was posted in Uncategorized by Editor. Bookmark the permalink [http://bcis.pacificu.edu/interface/?p=3228].