The efficacy of cyanoacrylate and beta-blockers in preventing gastric variceal rebleeds

Lam Le
Pacific University

Recommended Citation
Le, Lam, "The efficacy of cyanoacrylate and beta-blockers in preventing gastric variceal rebleeds" (2014). *School of Physician Assistant Studies*. 503.
https://commons.pacificu.edu/pa/503

This Capstone Project is brought to you for free and open access by the College of Health Professions at CommonKnowledge. It has been accepted for inclusion in School of Physician Assistant Studies by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.
The efficacy of cyanoacrylate and beta-blockers in preventing gastric variceal rebleeds

Abstract

Background: Esophageal and gastric varices are a frequent complication of patients with increased portal venous pressure. Gastic varice occurs and bleeds less frequently than esophageal varice in patients with portal hypertension. Bleeding of gastric varices, however, tends to be more severe and is associated with a higher rate of rebleeds and mortality. Currently, the treatment for preventing secondary gastric variceal hemorrhage includes transjuglar intrahepatic portosystemic shunting, band ligation propranolol and isosorbide mononitrate. Cyanoacrylate is the preferred treatment and has been effective in the treatment of acute gastric variceal hemorrhage worldwide but its use is limited in the United States. The use of cyanoacrylate in the preventing secondary gastric varices has not been well studied. It has been well documented that beta-blockers are effective in decreasing the incidence of secondary esophageal varices and is used empirically in prophylaxis of secondary gastric varices, without proof. The purpose of this systematic review is to determine whether the use of cyanoacrylate more effective than beta-blockers in preventing secondary gastric varices?

Methods: An exhaustive search was conducted using Medline-OVID, CINAHL, EBMR Multifile, and Web of Science using the keywords: cyanoacrylate, beta-blocker, gastric varices and portal hypertension. Relevant articles were assessed for quality using GRADE. A search on the NIH clinical trials site reveals there are no trials comparing the efficacy of cyanoacrylate and beta-blockers in preventing secondary gastric varices.

Results: Two studies met the inclusion criteria and were included in this systematic review. A randomized controlled trial included 64 patients with portal hypertension and upper gastrointestinal bleeding who met the inclusion criteria. The study showed a statistically significant reduction in secondary gastric variceal hemorrhage with cyanoacrylate injection compared beta-blocker. A randomized control trial consisting of 41 patients with esophageal or gastric variceal bleeding were included in the study. Results demonstrated that repeat cyanoacrylate injections were associated with more complication compared to beta-blocker with similar rebleeding rates after 6 weeks.

Conclusion: Cyanoacrylate is effective in decreasing the incidence of gastroesophageal varice type II and isolated gastric varice type I rebleeds and mortality compared to beta-blockers. Beta-blockers demonstrated a reduction in hepatic venous pressure gradient but there is no evidence that it prevents rebleeds from gastric varices. In addition, mixing cyanoacrylate and lipiodol resulted in more complication than cyanoacrylate alone. A strong recommendation can be made for the use of cyanoacrylate in both acute gastric variceal hemorrhage and secondary prophylaxis of gastric variceal bleed.

Degree Type
Capstone Project

Degree Name
Master of Science in Physician Assistant Studies

First Advisor
Annjanette Sommers

Keywords
Cyanoacrylate, beta-blocker, gastric varices, portal hypertension
Subject Categories
Medicine and Health Sciences

This capstone project is available at CommonKnowledge: https://commons.pacificu.edu/pa/503
Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the “Rights” section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.). Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see “Rights” on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209. Email inquiries may be directed to: copyright@pacificu.edu
NOTICE TO READERS

This work is not a peer-reviewed publication. The Master’s Candidate author of this work has made every effort to provide accurate information and to rely on authoritative sources in the completion of this work. However, neither the author nor the faculty advisor(s) warrants the completeness, accuracy or usefulness of the information provided in this work. This work should not be considered authoritative or comprehensive in and of itself and the author and advisor(s) disclaim all responsibility for the results obtained from use of the information contained in this work. Knowledge and practice change constantly, and readers are advised to confirm the information found in this work with other more current and/or comprehensive sources.

The student author attests that this work is completely his/her original authorship and that no material in this work has been plagiarized, fabricated or incorrectly attributed.
Comparison: The efficacy of cyanoacrylate and beta-blockers in preventing gastric variceal rebleeds

Lam Le

A Clinical Graduate Project Submitted to the Faculty of the
School of Physician Assistant Studies
Pacific University
Hillsboro, OR
For the Masters of Science Degree, August 2014

Faculty Advisor: Rob Rosenow
Clinical Graduate Project Coordinator: Annjanette Sommers, PA-C, MS
Biography

[Redacted for privacy]
Abstract

Background: Esophageal and gastric varices are a frequent complication of patients with increased portal venous pressure. Gastic varice occurs and bleeds less frequently than esophageal varice in patients with portal hypertension. Bleeding of gastric varices, however, tends to be more severe and is associated with a higher rate of rebleeds and mortality. Currently, the treatment for preventing secondary gastric variceal hemorrhage includes transjugular intrahepatic portosystemic shunting, band ligation propranolol and isosorbide mononitrate. Cyanoacrylate is the preferred treatment and has been effective in the treatment of actue gastric variceal hemorrhage worldwide but its use is limited in the United States. The use of cyanoacrylate in the preventing secondary gastric varices has not been well studied. It has been well documented that beta-blockers are effective in decreasing the incidence of secondary esophageal varices and is used empirically in prophylaxis of secondary gastric varices, without proof. The purpose of this systematic review is to determine whether the use of cyanoacrylate more effective than beta-blockers in preventing secondary gastric varices?

Methods: An exhaustive search was conducted using Medline-OVID, CINAHL, EBMR Multifile, and Web of Science using the keywords: cyanoacrylate, beta-blocker, gastric varices and portal hypertension. Relevant articles were assessed for quality using GRADE. A search on the NIH clinical trials site reveals there are no trials comparing the efficacy of cyanoacrylate and beta-blockers in preventing secondary gastric varices.

Results: Two studies met the inclusion criteria and were included in this systematic review. A randomized controlled trial included 64 patients with portal hypertension and upper gastrointestinal bleeding who met the inclusion criteria. The study showed a statistically significant reduction in secondary gastric variceal hemorrhage with cyanoacrylate injection compared beta-blocker. A randomized control trial consisting of 41 patients with esophageal or gastric variceal bleeding were included in the study. Results demonstrated that repeat cyanoacrylate injections were associated with more complication compared to beta-blocker with similar rebleeding rates after 6 weeks.

Conclusion: Cyanoacrylate is effective in decreasing the incidence of gastroesophageal varice type II and isolated gastric varice type I rebleeds and mortality compared to beta-blockers. Beta-blockers demonstrated a reduction in hepatic venous pressure gradient but there is no evidence that it prevents rebleeds from gastric varices. In addition, mixing cyanoacrylate and lipiodol resulted in more complication than cyanoacrylate alone. A strong recommendation can be made for the use of cyanoacrylate in both acute gastric variceal hemorrhage and secondary prophylaxis of gastric variceal bleed.

Keywords: Cyanoacrylate, beta-blocker, gastric varices, portal hypertension
Acknowledgements

[Redacted for privacy]
Table of Contents

Lam Le .. 1
Biography.. 2
Abstract ... 3
Acknowledgements .. 4
Table of Contents .. 5
List of Tables .. 6
List of Figures ... 6
List of Abbreviations .. 6
BACKGROUND ... 7
METHODS ... 9
RESULTS ... 9
DISCUSSION ... 15
CONCLUSION .. 18
References .. 19
Table I. Characteristics of Reviewed Studies ... 20
Table II. Summary of Findings ... 21
Figure I. Sarin Classification System .. 22
List of Tables

Table I: Characteristics of Reviewed Studies
Table II: Summary of Finding

List of Figures

Figure I: Sarin Classification System

List of Abbreviations

GOV1...Gastroesophageal Varice Type 1
GOV2...Gastroesophageal Varice Type 2
GRADE..................Grading of Recommendation, Assessment, Development and Evaluations
HVPG..Hepatic Venous Pressure Gradient
IGV1...Isolated Gastric Varice Type 1
IGV2...Isolated Gastric Varice Type 2
PHG...Portal Hypertensive Gastropathy
Comparison: the efficacy of cyanoacrylate and beta-blocker in preventing gastric variceal rebleeds

BACKGROUND

Gastric and esophageal varices are complications of increased portal venous pressure. Gastric varices occur in about 20-25% of patients with portal hypertension.1,2 Bleeding from gastric varices occur less frequently than esophageal varices1; however, the bleed tends to be more severe and is associated with a higher rate of mortality.1,3,4 Furthermore, gastric varices have a higher rate of rebleeds, occurring about 34-89% after control of acute hemorrhage.3,5,6

The location of the gastric varices plays an important factor in the frequency and severity of bleeding.5 Gastric varices are commonly classified by location using the Sarin classification. According to the classification system, there are four types of gastric varices: gastroesophageal varices type 1 (GOV1) are continuous with esophageal varices and extend 2 to 5 cm below the gastroesophageal junction; gastroesophageal varices type 2 (GOV2) are continuous with esophageal varices and extend into the cardia and fundus of the stomach; isolated gastric varices type 1 (IGV1) are varices that occur in the fundus of the stomach in the absence of esophageal varices; varices that occur in the gastric body, antrum or pylorus are called isolated gastric varices type 2 (IGV2).1,2

The treatment of gastric varices includes controlling the active bleeding and preventing secondary variceal hemorrhage. Currently, there are a number of treatment
options to control hemorrhaging but no standard approach has been agreed upon.

Beta-blockers are effective in decreasing variceal pressure and esophageal varices in patients with portal hypertension.10 Due to this, beta-blockers have been recommended empirically and used without evidence.11 The use of beta-blockers in the treatment of gastric varices are not well studied. Early research has indicated that beta-blocker therapy alone or adjunctively does not improve rebleeding rates of gastric varices.11,15

The use of cyanoacrylate, another treatment option, is limited in the United States despite promising reports. International studies has demonstrated that cyanoacrylate therapy is safe and effective therapy in stabilizing acute hemorrhage.8,14 In treating with cyanoacrylate, the hemorrhage is first visualized by an endoscope. Cyanoacrylate is then injected into the varix. Once the cyanoacrylate comes in contact with blood, an exothermic chain polymerization reaction occurs. Cyanoacrylate transforms from its original liquid form into a solid material, which physically occludes the vessels.8,14 In laboratory setting, cyanoacrylate solidifies in 5-12 seconds after contact with human blood.8,11 This transformation can be delayed with the use of lipiodol, a substances commonly used when treating gastric varices. This property allows the cyanoacrylate to be injected into the varix with ease. Lipiodol is also a radiopaque contrast, which provides a non-invasive method to visualize the varix post-operatively.8

There is a low incidence of complications from cyanoacrylate therapy which includes sepsis, distant embolism, gastric ulcer, mesentery hematoma,
hemoperitoneum and abdominal infection. Currently, the use of cyanoacrylate is limited to a number of centers in the United States under research protocol and is not approved by the Food and Drug Administration. This review will investigate and compare the efficacy between cyanoacrylate and beta-blockers in the prophylaxis of secondary gastric variceal bleeds.

METHODS

A thorough search of available medical literature was conducted using Medline-OVID, CINAHL, EBMR Multifile, and Web of Science using the keywords: cyanoacrylate, beta-blocker, gastric varices and portal hypertension. The search was refined to include only human articles. The references of the articles were further searched for relevant sources. Articles with primary data comparing the efficacy of cyanoacrylate and beta-blocker in the treatment of gastric varices were included. Relevant articles were assessed for quality using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE). A search on the NIH clinical trials site reveals there are no trials comparing the efficacy of cyanoacrylate and beta-blockers in preventing secondary gastric varices.

RESULTS

The initial results of the search yielded seven articles for review. Of these seven, two randomized controlled trials met the inclusion criteria.
Mirsha et al study

This randomized controlled trial11 investigated and compared the efficacy of beta-blocker and cyanoacrylate injection in the prevention of secondary gastric variceal bleeding. The study enrolled patients with gastric varices secondary to cirrhosis from August 2006 to March 2009. A total of 67 patients were enrolled, of which 64 participated and were randomized to receive either cyanoacrylate injection or beta-blocker. Patients who presented with active bleeds were treated with a combination of vasoactive drugs and a single injection of cyanoacrylate. After achieving homeostasis, follow-up was conducted on day 6 and continued thereafter. The primary outcomes were gastric variceal rebleed and death. Secondary outcomes included an increase or decrease in size of the gastric varices, appearance of new esophageal varices, and appearance or worsening of portal hypertensive gastropathy (PHG) and complications.11

Patients with gastroesophageal varices type 2 with eradicated esophageal varices or isolated gastric varices type 1 who bled from gastric varices who did not satisfy the exclusion criteria were included in the study. Patients were randomized using a sealed envelope technique. Allocation sequence remained known to the statistician. Investigators were blinded until intervention was assigned. Blinding was further achieved by concealing the group assignment from the doctors who evaluated the outcomes.11

The study consisted of 64 patients, 32 patients received cyanoacrylate injection and 32 received the non-selective beta-blocker, propranolol. Both groups were similar
in all baseline patient characteristics. All patients completed their assigned intervention with a median follow-up period of 26 months. Complete obturation with cyanoacrylate was achieved in all patients. All patients were compliant to the beta-blocker treatment with a mean dose of 160 mg per day.11

Treatment with cyanoacrylate demonstrated a significantly lower rate of recurrent variceal bleeding compared to beta-blocker treatment (15\% compared to 55\%, p=0.004). Three patients rebled in the cyanoacrylate treatment group (GOV2 (n=1), IGV1 (n=2)). Fifteen patients rebled in the beta-blocker group (GOV2 (n=12), IGV1 (n=3)). The study also showed a significant increase in frequency of rebleeding from GOV2 (p=0.005). A decrease in gastric variceal size from \textasciitilde 25 to \textasciitilde 5 mm was observed in all patients receiving cyanoacrylate injection (p<0.01). In contrast, 15 patients in the beta-blocker group had an increase in gastric variceal size \textasciitilde 25 to \textasciitilde 30 mm (p<0.01).

Seven patients in the cyanoacrylate group and four patients in the beta-blocker group developed esophageal varices, none of which bled (p=0.302). Both treatment groups were similar in appearance or worsening of PHG (p=0.213). There was no significant difference in frequency of complication observed between the two groups (p=1). A significant increase in hepatic venous pressure gradient (HVPG) was observed in the cyanoacrylate group (p=0.001). None of the patients in the cyanoacrylate group showed a decrease in HVPG. The beta-blocker group demonstrated a decrease in HVPG, which was significant (p=0.003). A >20\% reduction in HVPG was considered a response to treatment. Twelve patients responded to treatment. Five of those patients (GOV2 (n=4), IVG1 (n=1)) bled. Those who did not bleed had a mean decrease in HVPG of 30\%
from baseline in comparison with a 22% decrease in those who bled. A significant
difference in mortality was observed between the cyanoacrylate (n=1) and beta-blocker
(n=8) group (p=0.016). Of the eight who died in the beta-blocker group, one patient
responded to the beta-blocker treatment while the other patients did not (p=0.077).11

The authors found that a limitation to this study is including only patients with
IGV1 or GOV2 types of gastric varices. This limits the applicability of the study to those
two types of gastric varices. The authors conclude that cyanoacrylate is more effective
in preventing secondary gastric variceal rebleeds and improve survival rates compared
to beta-blocker treatment. Beta-blockers did not prevent gastric variceal rebleed
despite a reduction in HVPG.11

Evrard et al study

In this randomized trial,13 the authors investigated whether Histoacryl injections
are useful for long-term treatment of esophageal varices. They compared Histoacryl
obliteration with propranolol in preventing esophagogastric variceal rebleeds. From
August 1995 to February 1999, seventy-one patients were admitted for upper digestive
tract bleeding. Forty-one patients who presented with the first episode of bleeding
(n=38) or second episode occurring at least 6 months after the first one (n=3) satisfied
the inclusion criteria and were enrolled in the study. Thirty-one patients presented
with esophageal varices and 10 patients had gastric varices. All patients were treated
with Histoacryl at the time of admission to achieve hemostasis. An opaque sealed
envelope was used to randomly assign patients to either the Histoacryl (n=21) or propranolol group (n=20).13

The primary endpoints were rate of rebleeds, mortality and any complications, which were investigated at 6 weeks and after 6 weeks (the median follow-up duration of the Histoacryl group was 31.9 months and 23.2 months for the beta-blocker group). The authors agreed that the 6-week mark is an important time point for follow-up. They believed that this time point is when all consequences related to the bleeding event will manifest themselves. The authors performed an interim analysis after observing a higher complication rate in the Histoacryl group. The study was stopped early based on the results of the analysis.13

The data demonstrated no significant difference in rate of rebleeds at the 6-week mark. Five patients from the Histoacryl group rebled, 3 of which were gastric variceal rebleeds. Three patients in the beta-blocker group developed secondary variceal rebleeds, none of which were gastric in origin. Three patients died from the Histoacryl group compared to six in the beta-blocker group. Both groups had one patient who died from hemorrhage.

Median follow-up after 6-weeks for the Histoacryl group was 31.9 months (4.8-74.7) in contrast to the beta-blocker group which had a median follow-up of 23.2 months (3.0-70). No significant difference in rebleeds was observed between the two treatment groups. Six patients from the Histoacryl group experienced rebleeds, two that were secondary to gastric varices. Two patients in the beta-blocker group developed rebleeds, none located in the gastric region. The investigators did find that
the time between rebleeds was significantly delayed in the Histoacryl group. It was also observed that most of the patients who developed rebleeds in the Histoacryl group did not adhere to the recommended endoscopic follow-up schedule. No significant difference was observed in the overall mortality rate. One patient in the Histoacryl group died from hemorrhage in contrast to the beta-blocker group, which had no patient death from hemorrhage. Data analysis demonstrated a significantly higher incidence of complications in the Histoacryl group (n=10) compared to the beta-blocker group (n=2) (p<0.02). Most of the complications in the Histoacryl group occurred after esophageal injection (n=8).13

Evrard et al13 concluded that the use of Histoacryl injection with the goal of eradicating esophagogastric varices were associated with more complications compared to beta-blocker treatment. They also determined that there were no significant differences in rate of rebleeds and long-term survival rates between the two groups. The authors speculated that the higher number of rebleeds in the Histoacryl group maybe related to non-adherence to the follow-up schedule. They also mentioned that the complications in the Histoacryl group were temporary and inconsequential, and severe complications such as embolism are infrequent. An interesting observation from the study was that all the rebleeds from gastric varices occurred in the Histoacryl group. The study was stopped early after results of an interim analysis.13
DISCUSSION

It has been reported that gastric varices occur in over 20% of patients with portal hypertension. They are often present in patients with severe portal hypertension secondary to cirrhosis. Gastric varices are also associated with a higher rate of rebleeds after homeostasis. Both studies have differing conclusions on the efficacy of cyanoacrylate and beta-blocker treatment in the prophylaxis of secondary gastric variceal hemorrhage. The Mirshra study demonstrated that cyanoacrylate may be effective in preventing secondary gastric varices. The study included a multivariate analysis with variables that affect gastric variceal rebleeds. The analysis indicated that the treatment method, portal hypertensive gastropathy and size of gastric varix >20 mm independently correlated with gastric variceal rebleeds. Specifically, the cyanoacrylate group saw a decrease in varix size compared to the beta-blocker group, which saw an average increase in gastric variceal size of at least 5mm. This is a noteworthy finding as it may lead to changes in current standards and guidelines. There was a also correlation with rebleeds and mortality in that only one patient in the cyanoacryte group died compared to eight patients in the beta-blocker group. We may need to reevaluate the efficacy of emipiric beta-blocker treatment. Moreover, the study also showed a significant increase in HVPG in the cyanoacrylate group. The occlusion of the bleeding varice redirects the flow of blood to other vessels. This could explain the increase incidence of esophageal varices seen in this group compared to the beta-blocker group.

In contrast, the study conducted by Evrard et al demonstrated inconclusive results in regards to gastric rebleeding, but they do reaffirm the efficacy of
cyanoacrylate in controlling acute hemorrhage of gastric varices. They found no difference in rate of rebleeds and mortality between the two groups. The authors found that rebleeding from the Histoacryl group were from gastric varices. This observation may support the use of beta-blockers in the prevention of secondary gastric varices and should be further investigated.13

Both studies11,13 have limitations and their findings need further investigation to fully understand the benefits of the two treatment options in gastric variceal therapy. The Mirshra study11 was limited because small sample size and some lack of blinding. Since the comparison was between a procedure (cyanoacrylate injection) and an oral medication (propanolol), allocation concealment is inherently difficult. No mention of a double dummy technique was used. This study also did not use hemodynamic monitoring in measuring HVGP. The HVGP is estimated by measuring the pressure gradient between the wedged hepatic venous pressure and the free hepatic venous pressure. This study only included patients with either GOV2 or IVG2 varices. This may limit the application to those types of varices in the clinical setting.

The Evrard et al study13 was even more limited in a number of aspects. The authors observed a high rate of complications in the Histoacryl group and performed an interim analysis. The study was terminated prematurely based on the results; this lead to a small sample size in the study. The complication mostly occurred in patients with esophageal varices who were treated with Histoacryl. This may limit the applicability of the study to those with esophageal varices. The authors observed an increasing rate of rebleeds long-term in the Histoacryl group. However, no definitive conclusions can be
made due to the small sample size. Patient compliance was another issue in this study since many patients didn’t follow the scheduled endoscopic appointments, which may have influenced the rate of rebleeds in the Histoacryl group. Another possible explanation of the increase in complication is the use of lipiodol. As we know, mixing lipiodol with cyanoacrylate will delay the solidification, which can lead to complications such as distant embolism. This study13 did not clarify which type of gastric varices included in the study. As mentioned earlier, the location of the gastric varices plays a role in the frequency of rebleeds and severity of bleeding.5 This study can be strengthen by including more patient and clearly defining the type of gastric varices.

The GRADE quality assessment can be viewed on Table 1. The Mirsha et al study11 was downgraded for the lack of patient blinding. Serious imprecision was also determined from the study. There was a small sample size, which weakens the study. Indirectness and inconsistency were not serious and no publication bias was observed in the study. This article was not upgraded. The overall quality for this article is low. After review, it was determined that the Evrard et al study13 demonstrated serious limitations, indirectness and imprecision. The study had a small sample size and a lack of patient blinding. The primary outcome was not gastric rebleeding and the study was downgraded. The inconsistency of the study was not serious and no publication bias was determined. No upgrade was given. Based on the GRADE criteria, the overall quality for this article was very low. The overall combined quality of the studies reviewed is low based on the GRADE criteria.
CONCLUSION

The Mirshra et al11 study demonstrates that cyanoacrylate alone may be effective in preventing secondary gastric varice bleedings while the Evrard et al13 study is inconclusive. More specifically, the evidence supports its use with patients with gastroesophageal varices type 2 and isolated gastric varices type 1. The benefit of this treatment may outweigh the risk of rare complications like cyanoacrylate embolism. Currently, cyanoacrylate is not considered first-line treatment in the United States for gastric varice hemorrhage. Based on the findings, cyanoacrylate should be considered and recommended when treating acute gastric hemorrhage. Due to the limitations of the article, we can only speculate the benefits of cyanoacrylate in the prevention of secondary gastric variceal hemorrhage. Further research with larger sample size is needed to fully understand the effectiveness of cyanoacrylate in the prevention of secondary gastric variceal rebleeds. Another interesting avenue of research is to compare the efficacy of cyanoacrylate alone or mixed with lipiodol.
References

 http://www.uptodate.com.proxy.lib.pacificu.edu:2048/contents/treatment-of-
 active-variceal-
 hemorrhage?detectedLanguage=en&source=search_result&search=gastric+varic
 es&selectedTitle=1%7E27&provider=noProvider#H27. Accessed August 27, 2013.

 propranolol and placebo on the pressure of esophageal varices in patients with
 portal hypertesion.

 beta-blocker for secondary prophylaxis of gastric variceal bleed: a randomised

 propranolol in the prevention of esophagogastric variceal rebleeding: a

14. Binmoeller K, Soehendra N. “Superglue”: the answer to variceal bleeding and

 to endoscopic prophylactic treatment for gastric variceal bleeding: a randomized
 controlled trial. *Journal of Hepatology* 2012; 56: 1025-32

Table I. Characteristics of Reviewed Studies
Table II. Summary of Findings

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Patients</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment (total)</td>
<td>Placebo or no treatment (total)</td>
</tr>
<tr>
<td>Mirshra et al11</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>Evrard et al13</td>
<td>18</td>
<td>14</td>
</tr>
</tbody>
</table>

1 primary outcome was not gastric rebleeding
2 small sample sizes
a lack of blinding
Figure I. Sarin Classification System

Gastro Esophageal Varices (GOV)

GOV1

GOV2

Isolated Gastric Varices (IGV)

IGV1

IGV2